

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS ٥

patterning Roles of Eph receptors and ephrins in segmental

THE ROYAL

SOCIETY

Qiling Xu, Georg Mellitzer and David G. Wilkinson

**PHILOSOPHICAL
TRANSACTIONS**

 $OF-$

doi: 10.1098/rstb.2000.0635 Phil. Trans. R. Soc. Lond. B 2000 **355**, 993-1002

References <http://rstb.royalsocietypublishing.org/content/355/1399/993#related-urls> Article cited in:

BIOLOGICAL

SCIENCES

Email alerting service Receive free email alerts when new articles cite
top right-hand corner of the article or click **[here](http://rstb.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royptb;355/1399/993&return_type=article&return_url=http://rstb.royalsocietypublishing.org/content/355/1399/993.full.pdf)** Receive free email alerts when new articles cite this article - sign up in the box at the

To subscribe to Phil. Trans. R. Soc. Lond. B go to: **<http://rstb.royalsocietypublishing.org/subscriptions>**

BIOLOGICAL
SCIENCES

THE ROYAL **SOCIETY**

PHILOSOPHICAL
TRANSACTIONS $\overline{0}$

ROIAL
 Roles of Eph receptors and ephrins
 in segmental patterning in Example 20 and Sephranger
 in segmental patterning

Qiling Xu, Georg Mellitzer and David G. Wilkinson* *Division of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK*

on of Developmental Neurobiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW71AA, U
Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have key roles in patterning
and Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have key roles in patterning
and morphogenesis. Interactions between these molecules are promiscuous, but largely fall into two
groups: EphA receptor Eph receptor tyrosine kinases and their membrane-bound ligands, ephrins, have key roles in patterning
and morphogenesis. Interactions between these molecules are promiscuous, but largely fall into two
groups: EphA receptor and morphogenesis. Interactions between these molecules are promiscuous, but largely fall into two
groups: EphA receptors bind to glycosylphosphatidyl inositol-anchored ephrin-A ligands, and EphB
receptors bind to transmem groups: EphA receptors bind to glycosylphosphatidyl inositol-anchored ephrin-A ligands, and EphB
receptors bind to transmembrane ephrin-B proteins. Ephrin-B proteins transduce signals, such that
bidirectional signalling ca receptors bind to transmembrane ephrin-B proteins. Ephrin-B proteins transduce signals, such that
bidirectional signalling can occur upon interaction with the Eph receptor. In many tissues, there are
complementary and over bidirectional signalling can occur upon interaction with the Eph receptor. In many tissues, there are complementary and overlapping expression domains of interacting Eph receptors and ephrins. An important role of Eph rece complementary and overlapping expression domains of interacting Eph receptors and ephrins. An
important role of Eph receptors and ephrins is to mediate cell contact-dependent repulsion, and this has
been implicated in the important role of Eph receptors and ephrins is to mediate cell contact-dependent repulsion, and this has
been implicated in the pathfinding of axons and neural crest cells, and the restriction of cell intermingling
between been implicated in the pathfinding of axons and neural crest cells, and the restriction of cell intermingling
between hindbrain segments. Studies in an *in vitro* system show that bidirectional activation is required to
pr between hindbrain segments. Studies in an *in vitro* system show that bidirectional activation is required to prevent intermingling between cell populations, whereas unidirectional activation can restrict cell communicatio prevent intermingling between cell populations, whereas unidirectional activation can restrict cell
communication via gap junctions. Recent work indicates that Eph receptors can also upregulate cell
adhesion, but the bioch communication via gap junctions. Recent work indicates that Eph receptors can also upregulate cell
adhesion, but the biochemical basis of repulsion versus adhesion responses is unclear. Eph receptors and
ephrins have thus adhesion, but the biochemical basis of repulsion versus adhesion responses is unclear. Eph receptors and ephrins have thus emerged as key regulators that, in parallel with cell adhesion molecules, underlie the establishmen

Keywords: segmentation; cell signalling; receptor tyrosine kinase; cell movement

1. INTRODUCTION

One major aim of developmental biology is to identify the mechanisms that generate specific organized patterns of
mechanisms that generate specific organized patterns of
distinct cell types during embryogenesis. There has been One major aim of developmental biology is to identify the
mechanisms that generate specific organized patterns of
distinct cell types during embryogenesis. There has been
much progress in the identification and analysis of mechanisms that generate specific organized patterns of
distinct cell types during embryogenesis. There has been
much progress in the identification and analysis of inter-
cellular signals and transcription factors involve distinct cell types during embryogenesis. There has been
much progress in the identification and analysis of intermuch progress in the identification and analysis of inter-
cellular signals and transcription factors involved in the
induction of specific tissues or cell types at appropriate
locations in the developing embryo. However l cellular signals and transcription factors involved in the
induction of specific tissues or cell types at appropriate
locations in the developing embryo. However, less is known
regarding the mechanisms that control cell mo induction of specific tissues or cell types at appropriate
locations in the developing embryo. However, less is known
regarding the mechanisms that control cell movements locations in the developing embryo. However, less is known
regarding the mechanisms that control cell movements
crucial for patterning and morphogenesis. For example,
stereotyped movements such as convergent extension, and regarding the mechanisms that control cell movements
crucial for patterning and morphogenesis. For example,
stereotyped movements such as convergent extension, and
the migration of mesenchymal cells to specific destination crucial for patterning and morphogenesis. For example,
stereotyped movements such as convergent extension, and
the migration of mesenchymal cells to specific destinations,
are crucial for the morphogenesis and patterning o stereotyped movements such as convergent extension, and
the migration of mesenchymal cells to specific destinations,
are crucial for the morphogenesis and patterning of a number of tissues. In addition, there can be much moveare crucial for the morphogenesis and patterning of a
mumber of tissues. In addition, there can be much move-
ment and dispersal of clonally related cells, due to repeated (Steinberg 1970). Similar *in vitro* cell sorting number of tissues. In addition, there can be much move-
ment and dispersal of clonally related cells, due to repeated
rounds of division and the intercalation of adjacent cells
(see for example Kimmel *et al* 1994) This ra ment and dispersal of clonally related cells, due to repeated
rounds of division and the intercalation of adjacent cells
(see, for example, Kimmel *et al.* 1994). This raises the ques-
tion as to how organized patterns are rounds of division and the intercalation of adjacent cells
(see, for example, Kimmel *et al.* 1994). This raises the ques-
tion as to how organized patterns are maintained despite
such interminating that has the potential (see, for example, Kimmel *et al.* 1994). This raises the question as to how organized patterns are maintained despite such intermingling that has the potential to scramble distinct tissues or domains within a tissue that tion as to how organized patterns are maintained despite
such intermingling that has the potential to scramble
distinct tissues, or domains within a tissue that will later
form different derivatives. Similarly, how are pat such intermingling that has the potential to scramble
distinct tissues, or domains within a tissue that will later
form different derivatives. Similarly, how are patterns
maintained in distinct populations of mesenchymal c distinct tissues, or domains within a tissue that will later
form different derivatives. Similarly, how are patterns
maintained in distinct populations of mesenchymal cells
that have the potential to intermingle as cells m form different derivatives. Similarly, how are pattermaintained in distinct populations of mesenchymal cells that have the potential to intermingle as cells migrate?
Two general mechanisms can be envisaged to underly maintained in distinct populations of mesenchymal cells
that have the potential to intermingle as cells migrate?
Two general mechanisms can be envisaged to underlie

that have the potential to intermingle as cells migrate?
Two general mechanisms can be envisaged to underlie
the maintenance of organized patterns despite cell inter-
mingling. One mechanism involves a plasticity of cell Two general mechanisms can be envisaged to underlie
the maintenance of organized patterns despite cell inter-
mingling. One mechanism involves a plasticity of cell
specification, and local signals that cause any cells that the maintenance of organized patterns despite cell inter-
mingling. One mechanism involves a plasticity of cell
specification, and local signals that cause any cells that
cross into an adjacent territory to switch to the s mingling. One mechanism involves a plasticity of cell
specification, and local signals that cause any cells that
cross into an adjacent territory to switch to the same identity as their new neighbours. The other involves a

specific restriction of cell movement between adjacent cell
nopulations. There is good evidence for each of these specific restriction of cell movement between adjacent cell
populations. There is good evidence for each of these
mechanisms, which may act alone, or in parallel, to specific restriction of cell movement between adjacent cell
populations. There is good evidence for each of these
mechanisms, which may act alone, or in parallel, to
stabilize patterns and maintain sharp interfaces between populations. There is good evidence for each of these
mechanisms, which may act alone, or in parallel, to
stabilize patterns and maintain sharp interfaces between
distinct cell populations mechanisms, which may
stabilize patterns and mai
distinct cell populations.
There is much evidence bilize patterns and maintain sharp interfaces between
stinct cell populations.
There is much evidence for a key role of cell adhesion
plecules in stabilizing tissues by the establishment of

distinct cell populations.
There is much evidence for a key role of cell adhesion
molecules in stabilizing tissues by the establishment of There is much evidence for a key role of cell adhesion
molecules in stabilizing tissues by the establishment of
differences in cell–cell affinity. Classical experiments have
shown that when tissues are dissociated mixed an molecules in stabilizing tissues by the establishment of
differences in cell–cell affinity. Classical experiments have
shown that when tissues are dissociated, mixed and
reaggregated in vitro cells from different tissues s differences in cell–cell affinity. Classical experiments have
shown that when tissues are dissociated, mixed and
reaggregated *in vitro*, cells from different tissues sort out to
form segregated cell populations (Townes & shown that when tissues are dissociated, mixed and
reaggregated *in vitro*, cells from different tissues sort out to
form segregated cell populations (Townes & Holfreter
1955) This cell sorting can be explained by a model reaggregated *in vitro*, cells from different tissues sort out to
form segregated cell populations (Townes & Holfreter
1955). This cell sorting can be explained by a model in
which during intermingling cells of the same ty form segregated cell populations (Townes & Holfreter
1955). This cell sorting can be explained by a model in
which during intermingling, cells of the same type
preferentially associate because they have a stronger 1955). This cell sorting can be explained by a model in which during intermingling, cells of the same type which during intermingling, cells of the same type
preferentially associate because they have a stronger
affinity for each other than they do for a different cell type
(Steinberg 1970) Similar in vitm cell sorting occurs preferentially associate because they have a stronger
affinity for each other than they do for a different cell type
(Steinberg 1970). Similar *in vitro* cell sorting occurs between
cells expressing distinct cell adhesion affinity for each other than they do for a different cell type
(Steinberg 1970). Similar *in vitro* cell sorting occurs between
cells expressing distinct cell adhesion molecules, or
different levels of the same cell adhes (Steinberg 1970). Similar *in vitro* cell sorting occurs between cells expressing distinct cell adhesion molecules, or different levels of the same cell adhesion molecule (Nose et *allessing distinct cell adhesion molecules, or different levels of the same cell adhesion molecule (Nose <i>et al.* 1988; Friedlander *et al.* 1989). Taken together with the effect of null mutations and of blocking or ecton different levels of the same cell adhesion molecule (Nose *et al.* 1988; Friedlander *et al.* 1989). Taken together with the effect of null mutations, and of blocking or ectopic expression of cell adhesion molecules *in v* al. 1988; Friedlander *et al.* 1989). Taken together with the effect of null mutations, and of blocking or ectopic expression of cell adhesion molecules *in vivo* (e.g. Bradley *et al.* 1998; Godt & Tepass 1998; Gonzalez-R sion of cell adhesion molecules *in vivo* (e.g. Bradley *et al.* 1998; Godt & Tepass 1998; Gonzalez-Reyes & St Johnston 1998), these findings reveal a crucial role of tissue-
restricted cell adhesion molecules in stabiliz 1998; Godt & Tepass 1998; Gonzalez-Reyes & St Johnston
1998), these findings reveal a crucial role of tissue-
restricted cell adhesion molecules in stabilizing patterns of
cellular organization (reviewed by Takeichi 1991-1998), these findings reveal a crucial role of tissue-
restricted cell adhesion molecules in stabilizing patterns of
cellular organization (reviewed by Takeichi 1991;
Gumbiner 1996) Recent work has shown that another class restricted cell adhesion molecules in stabilizing patterns of
cellular organization (reviewed by Takeichi 1991;
Gumbiner 1996). Recent work has shown that another class
of molecules—Eph recentors and their ephrin ligands cellular organization (reviewed by Takeichi 1991;
Gumbiner 1996). Recent work has shown that another class
of molecules—Eph receptors and their ephrin ligands—
also contribute to the stabilization of tissue patterns. This Gumbiner 1996). Recent work has shown that another class
of molecules—Eph receptors and their ephrin ligands—
also contribute to the stabilization of tissue patterns. This
review will focus on the roles of Eph receptors an of molecules—Eph receptors and their ephrin ligands—
also contribute to the stabilization of tissue patterns. This
review will focus on the roles of Eph receptors and ephrins also contribute to the stabilization of tissue patterns. This
review will focus on the roles of Eph receptors and ephrins
in segmental patterning, and highlight the conclusions and
questions raised by these and other studi review will focus on the roles of Eph receptors and ephrins
in segmental patterning, and highlight the conclusions and
questions raised by these and other studies of their func-
tions in morphogenesis in segmental patterning, a
questions raised by these
tions in morphogenesis.

2. EPH RECEPTORS AND EPHRINS

BIOLOGICAL
SCIENCES **CIENCES**

INXO

 \mathbf{R} \mathbf{E} HL

PHILOSOPHICAL
TRANSACTIONS

BIOLOGICAL

IVXO

 $\overline{\mathbf{R}}$

THE

PHILOSOPHICAL
TRANSACTIONS

 \mathcal{L}

In vertebrates, Eph receptors comprise a family of 14 EFTI RECEPTORS AND EFTIRING
In vertebrates, Eph receptors comprise a family of 14
receptor tyrosine kinases that interact with a family of
eight membrane-bound ephrin ligands (Eph Nomen-In vertebrates, Eph receptors comprise a family of 14
receptor tyrosine kinases that interact with a family of
eight membrane-bound ephrin ligands (Eph Nomen-
clature Committee 1997) Recently an Eph receptor gene receptor tyrosine kinases that interact with a family of
eight membrane-bound ephrin ligands (Eph Nomen-
clature Committee 1997). Recently, an Eph receptor gene
has been found in *Caenorhabditis elegans* (George *et al* eight membrane-bound ephrin ligands (Eph Nomen-
clature Committee 1997). Recently, an Eph receptor gene
has been found in *Caenorhabditis elegans* (George *et al.*
1998), *Drosophila* (Scully *et al.* 1999) and sponges (Su has been found in *Caenorhabditis elegans* (George *et al.* different *Eph* receptor or *ephrin* is expressed in a specific 1998), *Drosophila* (Scully *et al.* 1999) and sponges (Suga *et* tissue (Wang & Anderson 1997; Fe multicellular animals. The most distinctive feature of Eph al. 1999), suggesting that they have an ancient role in multicellular animals. The most distinctive feature of Eph receptors is the primary structure of the extracellular region which includes two fibronectin type III moti multicellular animals. The most distinctive feature of Eph
receptors is the primary structure of the extracellular
region, which includes two fibronectin type III motifs
(Pasquale 1991) 20 conserved cysteines, many of whic receptors is the primary structure of the extracellular
region, which includes two fibronectin type III motifs
(Pasquale 1991), 20 conserved cysteines, many of which
are clustered in a cysteine-rich region and an N-termina region, which includes two fibronectin type III motifs
(Pasquale 1991), 20 conserved cysteines, many of which
are clustered in a cysteine-rich region, and an N-terminal
ligand-binding domain (Labrador *et al.* 1997: Lackma (Pasquale 1991), 20 conserved cysteines, many of which
are clustered in a cysteine-rich region, and an N-terminal
ligand-binding domain (Labrador *et al.* 1997; Lackmann
et al. 1998). Based on amino-acid sequence similar are clustered in a cysteine-rich region, and an N-terminal
ligand-binding domain (Labrador *et al.* 1997; Lackmann
et al. 1998). Based on amino-acid sequence similarities
(see Gale *et al.* 1996*a*) vertebrate Eph recent External ligand-binding domain (Labrador *et al.* 1997; Lackmann *et al.* 1998). Based on amino-acid sequence similarities \bigcup (see Gale *et al.* 1996*a*), vertebrate Eph receptors can be *et al.* 1998). Based on amino-acid sequence similarities (see Gale *et al.* 1996*a*), vertebrate Eph receptors can be divided into two subclasses, EphA (EphA1 to EphA8) and EphB (EphB1 to EphB6) Ephrins fall into two stru (see Gale *et al.* 1996*a*), vertebrate Eph receptors can be divided into two subclasses, EphA (EphA1 to EphA8) and EphB (EphB1 to EphB6). Ephrins fall into two structural classes with the enhrin-A proteins (ephrin-A1 to divided into two subclasses, EphA (EphA1 to EphA8)
and EphB (EphBl to EphB6). Ephrins fall into two structural classes, with the ephrin-A proteins (ephrin-A1 to
ephrin-A⁵) anchored in the plasma membrane through a and EphB (EphBI to EphB6). Ephrins fall into two structural classes, with the ephrin-A proteins (ephrin-AI to ephrin-A5) anchored in the plasma membrane through a tural classes, with the ephrin-A proteins (ephrin-Al to
ephrin-A5) anchored in the plasma membrane through a
glycosylphosphatidyl inositol linkage, whereas ephrin-B
proteins (ephrin-Bl to ephrin-B3) have a transmembrane ephrin-A5) anchored in the plasma membrane through a
glycosylphosphatidyl inositol linkage, whereas ephrin-B
proteins (ephrin-B1 to ephrin-B3) have a transmembrane
region and short cytoplasmic region. At the C-terminal glycosylphosphatidyl inositol linkage, whereas ephrin-B
proteins (ephrin-Bl to ephrin-B3) have a transmembrane
region and short cytoplasmic region. At the C-terminal
end of this cytoplasmic region are 33 highly conserved proteins (ephrin-B1 to ephrin-B3) have a transmembrane
region and short cytoplasmic region. At the C-terminal
end of this cytoplasmic region are 33 highly conserved
amino acids including five tyrosine residues. Interaction region and short cytoplasmic region. At the C-terminal
end of this cytoplasmic region are 33 highly conserved
amino acids including five tyrosine residues. Interactions
between Eph receptors and ephrins largely fall into t end of this cytoplasmic region are 33 highly conserved
amino acids including five tyrosine residues. Interactions
between Eph receptors and ephrins largely fall into two
binding-specificity, classes. EphA, receptors, bind, amino acids including five tyrosine residues. Interactions
between Eph receptors and ephrins largely fall into two
binding-specificity classes. EphA receptors bind the between Eph receptors and ephrins largely fall into two
binding-specificity classes. EphA receptors bind the
ephrin-A ligands, whereas EphB receptors bind the
ephrin-B proteins: an exception is the EphA4 receptor binding-specificity classes. EphA receptors bind the
ephrin-A ligands, whereas EphB receptors bind the
ephrin-B proteins; an exception is the EphA4 receptor
that binds ephrin-B2 and ephrin-B3 as well as ephrin-A ephrin-A ligands, whereas EphB receptors bind the
ephrin-B proteins; an exception is the EphA4 receptor
that binds ephrin-B2 and ephrin-B3 as well as ephrin-A
ligands (Gale *et al.* 1996*e*) ephrin-B proteins; an exception is the EphA4 receptor that binds ephrin-B2 and ephrin-B3 as well as ephrin-A ligands (Gale *et al.* 1996*a*). that binds ephrin-B2 and ephrin-B3 as well as ephrin-A
ligands (Gale *et al.* 1996*a*).
Membrane-bound ephrins trigger Eph receptor
phosphorylation, whereas soluble forms bind to Eph

receptor but do not trigger receptor activation (Davis *et* phosphorylation, whereas soluble forms bind to Eph
receptor but do not trigger receptor activation (Davis *et*
al. 1994). However, soluble ephrins activate the receptor
when they are artificially aggregated (Davis *et al* receptor but do not trigger receptor activation (Davis *et al.* 1994). However, soluble ephrins activate the receptor when they are artificially aggregated (Davis *et al.* 1994), and there is evidence that higher-order clu al. 1994). However, soluble ephrins activate the receptor when they are artificially aggregated (Davis *et al.* 1994), and there is evidence that higher-order clusters may stimulate distinct responses from dimers (Gale $\$ when they are artificially aggregated (Davis *et al.* 1994), towards their targets (Henkemeyer *et al.* 1996; Orioli *et al.* and there is evidence that higher-order clusters may 1996; Wang & Anderson 1997; Dottori *et al* and there is evidence that higher-order clusters may
stimulate distinct responses from dimers (Gale & o
Yancopoulos 1997; Stein *et al.* 1998). These findings show (stimulate distinct responses from dimers (Gale & Yancopoulos 1997; Stein *et al.* 1998). These findings show that Eph receptors and ephrins mediate contact-
dependent cell interactions and suggest that membrane that Eph receptors and ephrins mediate contact-
dependent cell interactions, and suggest that membrane that Eph receptors and ephrins mediate contact-
dependent cell interactions, and suggest that membrane
anchoring of ephrins may enable their clustering before
or upon binding to Eph receptor choring of ephrins may enable their clustering before
upon binding to Eph receptor.
The strong amino-acid sequence conservation in the
reacellular domain of ephrin-B family members raised

or upon binding to Eph receptor.
The strong amino-acid sequence conservation in the The strong amino-acid sequence conservation in the
intracellular domain of ephrin-B family members raised
the possibility that these proteins may themselves trans-
duce signals and this received indirect support from intracellular domain of ephrin-B family members raised
the possibility that these proteins may themselves trans-
duce signals, and this received indirect support from
analysis of mutants of the $FbhR2$ grape (Henkemeyer et the possibility that these proteins may themselves trans-
duce signals, and this received indirect support from
analysis of mutants of the *EphB2* gene (Henkemeyer *et al.*
1996). Biochemical evidence was obtained in exper analysis of mutants of the $EphB2$ gene (Henkemeyer *et al.* 1996). Biochemical evidence was obtained in experiments showing that tyrosine phosphorylation of ephrin-B1-B2 protein occurs upon interaction with clustered solu 1996). Biochemical evidence was obtained in experiments membrane-bound EphB2, presumably by recruitment of protein occurs upon interaction with clustered soluble or
membrane-bound EphB2, presumably by recruitment of
a cytoplasmic kinase to the ephrin-B cytoplasmic domain
(Holland *et al.* 1996: Bruckner *et al.* 1997) Thus inte membrane-bound EphB2, presumably by recruitment of
a cytoplasmic kinase to the ephrin-B cytoplasmic domain
(Holland *et al.* 1996; Bruckner *et al.* 1997). Thus, inter-
action between cells expressing Eph receptor with cel a cytoplasmic kinase to the ephrin-B cytoplasmic domain (Holland *et al.* 1996; Bruckner *et al.* 1997). Thus, interaction between cells expressing Eph receptor with cells expressing ephrin-B may lead to bidirectional sima (Holland *et al.* 1996; Bruckner *et al.* 1997). Thus, interaction between cells expressing Eph receptor with cells expressing ephrin-B may lead to bidirectional signal transduction with each component acting as both action between cells expressing Eph receptor with cells
expressing ephrin-B may lead to bidirectional signal
transduction, with each component acting as both
'receptor' and 'ligand' expressing ephrin-B m
transduction, with ea
'receptor' and 'ligand'.
Gene-expression stud transduction, with each component acting as both

'receptor' and 'ligand'.

Gene-expression studies have shown that, collectively,

The *Ephreeser and 'ligand'*.
 Example: Gene-expression studies have shown that, collectively,

the *Eph* receptor and *ephrin* gene families are expressed in

complex patterns in many perhans all tissues throughout Gene-expression studies have shown that, collectively,
the Eph receptor and *ephrin* gene families are expressed in
complex patterns in many, perhaps all tissues throughout
development and in the adult (for references se the *Eph* receptor and *ephrin* gene families are expressed in
complex patterns in many, perhaps all tissues throughout
development and in the adult (for references, see *Phil. Trans. R. Soc. Lond.* B (2000) *Phil. Trans. R. Soc. Lond.* B (2000)

Flanagan & Vanderhaeghen 1998; Wilkinson 2000). Individual members of the same *Eph* receptor or *ephrin* class Flanagan & Vanderhaeghen 1998; Wilkinson 2000). Individual members of the same *Eph* receptor or *ephrin* class
can have the same as well as distinct sites of expression,
raising the possibility that family members could h vidual members of the same Eph receptor or *ephrin* class
can have the same as well as distinct sites of expression,
raising the possibility that family members could have
overlapping or synergistic roles in some tissues can have the same as well as distinct sites of expression,
raising the possibility that family members could have
overlapping or synergistic roles in some tissues. Several
examples have been found in which in different spe raising the possibility that family members could have
overlapping or synergistic roles in some tissues. Several
examples have been found in which, in different species, a
different *Ebb* recentor or *ebhrin* is expressed overlapping or synergistic roles in some tissues. Several examples have been found in which, in different species, a different *Eph* receptor or *ephrin* is expressed in a specific tissue (Wang & Anderson 1997; Feldheim et al. 1998), tissue (Wang & Anderson 1997; Feldheim *et al.* 1998), suggesting that some members of the same class may be functionally interchangeable and have similar or identical biochemical properties. Importantly expression studie suggesting that some members of the same class may be
functionally interchangeable and have similar or identical
biochemical properties. Importantly, expression studies
have shown that interacting Eph receptors and ephrins biochemical properties. Importantly, expression studies have shown that interacting Eph receptors and ephrins biochemical properties. Importantly, expression studies
have shown that interacting Eph receptors and ephrins
are in some regions expressed in complementary
domains whereas in other regions there are overlaps (e.g. have shown that interacting Eph receptors and ephrins
are in some regions expressed in complementary
domains, whereas in other regions there are overlaps (e.g.
Elenniken et al. 1996: Gale et al. 1996a: Connor et al. 1998 are in some regions expressed in complementary
domains, whereas in other regions there are overlaps (e.g.
Flenniken *et al.* 1996; Gale *et al.* 1996*a*; Connor *et al.* 1998;
Adams *et al.* 1999: Sobieszczuk & Wilkinson 1 domains, whereas in other regions there are overlaps (e.g. Flenniken *et al.* 1996; Gale *et al.* 1996; Connor *et al.* 1998; Adams *et al.* 1999; Sobieszczuk & Wilkinson 1999). There have been major advances in understanding develop-Adams *et al.* 1999; Sobieszczuk & Wilkinson 1999). There
have been major advances in understanding develop-
mental roles of complementary Eph receptor and ephrin
expression, and recept work has started to elucidate the have been major advances in understanding developmental roles of complementary Eph receptor and ephrin expression, and recent work has started to elucidate the significance of overlapping expression mental roles of complementary Eph recexpression, and recent work has started
significance of overlapping expression. **3. ROLES IN AXONAL PATHFINDING**

phosphorylation, mapping of projections (Drescher *et al.* 1995; Nakamoto *et*
Membrane-bound ephrins trigger Eph receptor *al.* 1996; Monschau *et al.* 1997; Zhou 1997; Feldheim *et al.*
1998). Eph receptors and ephrins c or upon binding to Eph receptor.

The strong amino-acid sequence conservation in the receptors and ephrins may have a general role in

intracellular domain of ephrin-B family members raised

the possibility that these prot There is now much evidence that Eph receptors and **EXECUTE IN AXONAL PATHFINDING**
There is now much evidence that Eph receptors and
ephrins have key roles in guiding neuronal growth cones
(reviewed by Drescher *et al.* 1997: Orioli & Klein 1997: There is now much evidence that Eph receptors and
ephrins have key roles in guiding neuronal growth cones
(reviewed by Drescher *et al.* 1997; Orioli & Klein 1997;
Elanagan & Vanderbaeghen 1998; O'Leary & Wilkinson ephrins have key roles in guiding neuronal growth cones
(reviewed by Drescher *et al.* 1997; Orioli & Klein 1997;
Flanagan & Vanderhaeghen 1998; O'Leary & Wilkinson
1999) In the retinotectal system and other topographic (reviewed by Drescher *et al.* 1997; Orioli & Klein 1997; Flanagan & Vanderhaeghen 1998; O'Leary & Wilkinson 1999). In the retinotectal system and other topographic mans gradients of an EphA receptor in neurons and of Flanagan & Vanderhaeghen 1998; O'Leary & Wilkinson
1999). In the retinotectal system and other topographic
maps, gradients of an EphA receptor in neurons and of
enhrin-A ligands in the target tissue underlie a graded maps, gradients of an EphA receptor in neurons and of ephrin-A ligands in the target tissue underlie a graded maps, gradients of an EphA receptor in neurons and of
ephrin-A ligands in the target tissue underlie a graded
repulsion of growth cones that establishes a spatial
mapping of projections (Drescher *et al* 1995: Nakamoto *et* ephrin-A ligands in the target tissue underlie a graded
repulsion of growth cones that establishes a spatial
mapping of projections (Drescher *et al.* 1995; Nakamoto *et*
al. 1996: Monschau et al. 1997: Zhou 1997: Feldheim *al*. 1996; Monschau *et al.* 1997; *Alalahora 1996; Monschau <i>et al.* 1997; Zhou 1997; Feldheim *et al.* 1998; Frisen *et al.* 1998). Eph receptors and ephrins can also act as repellents at boundaries to prevent axons fro also act as repellents at boundaries to prevent axons from 1998; Frisen *et al.* 1998). Eph receptors and ephrins can
also act as repellents at boundaries to prevent axons from
entering specific territories, and thus channel them
towards their targets (Henkemever *et al.* 1996; O also act as repellents at boundaries to prevent axons from
entering specific territories, and thus channel them
towards their targets (Henkemeyer *et al.* 1996; Orioli *et al.*
1996; Wang & Anderson 1997; Dottori *et al.* towards their targets (Henkemeyer *et al.* 1996; Orioli *et al.* 1996; Wang & Anderson 1997; Dottori *et al.* 1998). Studies of growth cone collapse responses to ephrin repellents (Meima *et al.* 1997*a b*) and of the bio 1996; Wang & Anderson 1997; Dottori *et al.* 1998). Studies of growth cone collapse responses to ephrin repellents (Meima *et al.* 1997*a*,*b*), and of the biochemical pathways triggered by Eph receptor activation (review of growth cone collapse responses to ephrin repellents (Meima *et al.* 1997*a*,*b*), and of the biochemical pathways triggered by Eph receptor activation (reviewed by (Meima *et al.* 1997*a,b*), and of the biochemical pathways
triggered by Eph receptor activation (reviewed by
Bruckner & Klein 1998), suggest that the actin cyto-
skeleton is a major target of signalling It is therefore triggered by Eph receptor activation (reviewed by
Bruckner & Klein 1998), suggest that the actin cyto-
skeleton is a major target of signalling. It is therefore
believed that the complementary expression of Eph Bruckner & Klein 1998), suggest that the actin cyto-
skeleton is a major target of signalling. It is therefore
believed that the complementary expression of Eph
receptors and enhring may have a general role in skeleton is a major target of signalling. It is therefore
believed that the complementary expression of Eph
receptors and ephrins may have a general role in
preventing neuronal growth cones from entering inanbelieved that the complementary expression of Eph
receptors and ephrins may have a general role in
preventing neuronal growth cones from entering inap-
propriate territories. As will be discussed below there is a receptors and ephrins may have a general role in
preventing neuronal growth cones from entering inap-
propriate territories. As will be discussed below, there is a
strong parallel between roles in axonal pathfinding and at preventing neuronal growth cones from entering inappropriate territories. As will be discussed below, there is a strong parallel between roles in axonal pathfinding and at earlier stages of patterning.

**4. RESTRICTION OF CELL INTERMINGLING DURING TION OF CELL INTERMINGLING I
HINDBRAIN SEGMENTATION HINDBRAIN SEGMENTATION**
The hindbrain is subdivided into repeated morpho-

logical units, termed rhombomeres, that underlie a The hindbrain is subdivided into repeated morphological units, termed rhombomeres, that underlie a segmental organization of nerves and of neural crest cells that migrate in streams into the branchial arches. These logical units, termed rhombomeres, that underlie a
segmental organization of nerves and of neural crest cells
that migrate in streams into the branchial arches. These
cellular patterns are established by the segmental expr segmental organization of nerves and of neural crest cells
that migrate in streams into the branchial arches. These
cellular patterns are established by the segmental expres-
sion of genes such as $Kmv-20$ required for the that migrate in streams into the branchial arches. These cellular patterns are established by the segmental expression of genes such as *Krox-20* required for the formation of segments, and by *Hox* genes that confer anteroposterior sion of genes such as $Krox-20$ required for the formation of
segments, and by Hox genes that confer anteroposterior
 $(A-P)$ identity (reviewed by McGinnis & Krumlauf
1999: Wilkinson 1993: Lumsden & Krumlauf 1996) The segments, and by Hox genes that confer anteroposterior $(A-P)$ identity (reviewed by McGinnis & Krumlauf 1992; Wilkinson 1993; Lumsden & Krumlauf 1996). The expression domains of these segmentation and segment (A–P) identity (reviewed by McGinnis & Krumlauf
1992; Wilkinson 1993; Lumsden & Krumlauf 1996). The
expression domains of these segmentation and segment

detected in the hindbrain.
identity genes have sharp boundaries, which are likely to Figure 1. Expression patterns of Eph receptors and ephrins in the developing hindbrain. The diagram illustrates the Figure 1. Expression patterns of Eph receptors and ephrins in
the developing hindbrain. The diagram illustrates the
expression domains in the hindbrain of ephrin-B proteins and
Enh receptors that they interact with. There the developing hindbrain. The diagram illustrates the
expression domains in the hindbrain of ephrin-B protein
Eph receptors that they interact with. There is both
complementarity and overlap between the expression de Eph receptors that they interact with. There is both
complementarity and overlap between the expression domains Eph receptors that they interact with. There is both
complementarity and overlap between the expression domains
of these ephrins and Eph receptors. The EphA2 and EphA7
receptors are also expressed in the hindbrain (not sho complementarity and overlap between the expression domains
of these ephrins and Eph receptors. The EphA2 and EphA7
receptors are also expressed in the hindbrain (not shown) but
ephrin-A ligands that interact with these hav receptors are also expressed in the hindbrain (not shown) but ephrin-A ligands that interact with these have not been

underlie a homogeneous specification of segments that identity genes have sharp boundaries, which are likely to
underlie a homogeneous specification of segments that
establishes precise patterns of neuronal organization.
Hindbrain patterning thus provides an example of an underlie a homogeneous specification of segments that
establishes precise patterns of neuronal organization.
Hindbrain patterning thus provides an example of an
important general question: What are the mechanisms establishes precise patterns of neuronal organization.
Hindbrain patterning thus provides an example of an
important general question: What are the mechanisms
that establish and maintain precise patterns of gene Hindbrain patterning thus provides an example of an
important general question: What are the mechanisms
that establish and maintain precise patterns of gene
expression and tissue organization? important general question: What a
that establish and maintain precise
expression and tissue organization?
Studies of cell lineage have shown t that establish and maintain precise patterns of gene
expression and tissue organization?
Studies of cell lineage have shown that whereas there is
substantial cell intermingling between presumptive rhom-

expression and tissue organization?
Studies of cell lineage have shown that whereas there is
substantial cell intermingling between presumptive rhom-
homeres after morphological segmentation there is a Studies of cell lineage have shown that whereas there is
substantial cell intermingling between presumptive rhom-
bomeres, after morphological segmentation there is a
major restriction to cell movement between adjacent substantial cell intermingling between presumptive rhom-
bomeres, after morphological segmentation there is a
major restriction to cell movement between adjacent
segments (Fraser et al. 1990) Taken together with studies bomeres, after morphological segmentation there is a major restriction to cell movement between adjacent segments (Fraser *et al.* 1990). Taken together with studies of segmental gene expression, these findings suggest tha major restriction to cell movement between adjacent segments (Fraser *et al.* 1990). Taken together with studies of segmental gene expression, these findings suggest that a local regulation of cell identity and the segmen segments (Fraser *et al.* 1990). Taken together with studies
of segmental gene expression, these findings suggest that
a local regulation of cell identity and the segmental
restriction of cell movement may both contribute of segmental gene expression, these findings suggest that
a local regulation of cell identity and the segmental
restriction of cell movement may both contribute to the
maintenance and sharpening of segmental domains a local regulation of cell identity and the segmental
restriction of cell movement may both contribute to the
maintenance and sharpening of segmental domains
(Irving *et al.* 1996). The restriction of cell movement restriction of cell movement may both contribute to the maintenance and sharpening of segmental domains (Irving *et al.* 1996). The restriction of cell movement maintenance and sharpening of segmental domains (Irving *et al.* 1996). The restriction of cell movement between adjacent segments is due to a cellular property that is present in alternating rhombomeres such that r ⁹/ (Irving *et al.* 1996). The restriction of cell movement
between adjacent segments is due to a cellular property
that is present in alternating rhombomeres, such that r2/
 $r^4/r6$ can intermingle with each other and so can between adjacent segments is due to a cellular property
that is present in alternating rhombomeres, such that $r^2/r^4/r^6$ can intermingle with each other, and so can r3/r5,
but cells from even-numbered segments do not int that is present in alternating rhombomeres, such that $r2/r5$, $r4/r6$ can intermingle with each other, and so can $r3/r5$, but cells from even-numbered segments do not inter-
mingle with cells from odd-numbered segments (Gu r4/r6 can intermingle with each other, and so can r3/r5,
but cells from even-numbered segments do not inter-
mingle with cells from odd-numbered segments (Guthrie
 $et \, al. 1993$) but cells from
mingle with
et al. 1993).
One poter mingle with cells from odd-numbered segments (Guthrie *et al.* 1993).
One potential mechanism for restricting intermingling

between rhombomeres is that a cell adhesion molecule(s) One potential mechanism for restricting intermingling
between rhombomeres is that a cell adhesion molecule(s)
underlies a differential adhesion of cells in odd- versus
even-numbered rhombomeres (Wizenmann & Lumsden between rhombomeres is that a cell adhesion molecule(s)
underlies a differential adhesion of cells in odd-versus
even-numbered rhombomeres (Wizenmann & Lumsden
1997) but an adhesion protein with alternating segmental underlies a differential adhesion of cells in odd- versus
even-numbered rhombomeres (Wizenmann & Lumsden
1997), but an adhesion protein with alternating segmental
expression, has not been discovered. The expression even-numbered rhombomeres (Wizenmann & Lumsden mosaic activation of Eph receptors is sufficient for cell
1997), but an adhesion protein with alternating segmental sorting. By analogy with the effects of differential cell
1 1997), but an adhesion protein with alternating segmental
expression has not been discovered. The expression
patterns of Eph receptors and ephrins are consistent with
the possibility that they restrict cell movements betwe expression has not been discovered. The expression
patterns of Eph receptors and ephrins are consistent with
the possibility that they restrict cell movements between
hindbrain segments $FhhA4$ $FhhB2$ and $FhhB3$ are patterns of Eph receptors and ephrins are consistent with
the possibility that they restrict cell movements between
hindbrain segments. *EphA4*, *EphB2* and *EphB3* are
expressed at high levels in rhombomeres r³/r⁵ (Ni the possibility that they restrict cell movements between
hindbrain segments. *EphA4*, *EphB2* and *EphB3* are
expressed at high levels in rhombomeres r3/r5 (Nieto *et*
al. 1992: Becker *et al.* 1994: Henkemever *et al.* 1 *hindbrain* segments. *EphA4*, *EphB2* and *EphB3* are expressed at high levels in rhombomeres r3/r5 (Nieto *et al.* 1992; Becker *et al.* 1994; Henkemeyer *et al.* 1994), whereas *ephrin-B1 ephrin-B2* and *ephrin-B3* are expressed at high levels in rhombomeres r3/r5 (Nieto *et* Consistent with a repulsion or de-adhesion response, *al.* 1992; Becker *et al.* 1994; Henkemeyer *et al.* 1994), there are larger intercellular spaces at rhombomer al. 1992; Becker et al. 1994; Henkemeyer et al. 1994), whereas *ephrin-B1*, *ephrin-B2*, and *ephrin-B3* are expressed
at high levels in $r2/r4/r6$ (Bergemann *et al.* 1995; Flen-
niken *et al.* 1996*;* Gale *et al.* 1996*b*) (figure 1). Due to this
complementary expression, int at high levels in $r2/r4/r6$ (Bergemann *et al.* 1995; Flen-
niken *et al.* 1996; Gale *et al.* 1996*b*) (figure 1). Due to this
complementary expression, interactions of EphA4 and
EphB recentors with ephrin-B proteins will niken *et al.* 1996; Gale *et al.* 1996*b*) (figure 1). Due to this complementary expression, interactions of EphA4 and EphB receptors with ephrin-B proteins will occur at the EphB receptors with ephrin-B proteins will occur at the *Phil. Trans. R. Soc. Lond.* B (2000)

 $\frac{1}{1}$ is ∞
interface of adjacent rhombomeres. However, there are
also some overlaps in expression of Eph receptors and interface of adjacent rhombomeres. However, there are
also some overlaps in expression of Eph receptors and
ephrins at least in r2 and r3 (figure 1) also some overlaps in expression of Eph receptors and ephrins, at least in r2 and r3 (figure 1).

5. CELLULAR RESPONSES REGULATED BY EPH RECEPTORS AND EPHRINS IN THE HINDBRAIN

We obtained initial clues to roles of Eph receptors in We obtained initial clues to roles of Eph receptors in
the hindbrain in experiments in which truncated
Eph 44 lacking the kinase domain was expressed widely We obtained initial clues to roles of Eph receptors in
the hindbrain in experiments in which truncated
EphA4 lacking the kinase domain was expressed widely
in zebrafish embryos by RNA injection at the one- or EphA4 lacking the kinase domain was expressed widely
in zebrafish embryos by RNA injection at the one- or
two-cell stage (Xu *et al.* 1995). Due to the phenomenon in zebrafish embryos by RNA injection at the one- or in zebrafish embryos by RNA injection at the one- or two-cell stage (Xu *et al.* 1995). Due to the phenomenon of bidirectional activation, truncated EphA4 may act in a dominant negative manner to block endogenous. Eph two-cell stage (Xu *et al.* 1995). Due to the phenomenon
of bidirectional activation, truncated EphA4 may act in a
dominant negative manner to block endogenous Eph
receptors and as a ligand that ectonically activates of bidirectional activation, truncated EphA4 may act in a
dominant negative manner to block endogenous Eph
receptors, and as a ligand that ectopically activates
ephrin-B proteins. In contrast to control uniniected dominant negative manner to block endogenous Ephreceptors, and as a ligand that ectopically activates
ephrin-B proteins. In contrast to control uninjected
embryos (figure $2a$) cells with r^3/r^5 identity were often receptors, and as a ligand that ectopically activates
ephrin-B proteins. In contrast to control uninjected
embryos (figure 2*a*), cells with r3/r5 identity were often
present in r2/r4/r6 sometimes causing a fusion of r3 a ephrin-B proteins. In contrast to control uninjected
embryos (figure 2a), cells with r3/r5 identity were often
present in r2/r4/r6, sometimes causing a fusion of r3 and
r5 territories (figure 2c). Similar results were obt embryos (figure 2*a*), cells with $r3/r5$ identity were often
present in $r2/r4/r6$, sometimes causing a fusion of r3 and
 $r5$ territories (figure 2*c*). Similar results were obtained
when exogenous enhrin- $R2$ was widely ex present in $r2/r4/r6$, sometimes causing a fusion of r3 and
r5 territories (figure 2c). Similar results were obtained
when exogenous ephrin-B2 was widely expressed in
zebrafish embryos such that EphA4 and EphB recentors r5 territories (figure 2c). Similar results were obtained
when exogenous ephrin-B2 was widely expressed in
zebrafish embryos, such that EphA4 and EphB receptors
would be activated throughout r^{3}/r^{5} , rather than direczebrafish embryos, such that EphA4 and EphB receptors
would be activated throughout $r3/r5$, rather than directionally at rhombomere boundaries (figure $2b$). These would be activated throughout r^3/r^5 , rather than directionally at rhombomere boundaries (figure $2b$). These phenotypes are consistent with several possible models.
Blocking or activation of Eph receptors or ephrins co tionally at rhombomere boundaries (figure 2*b*). These
phenotypes are consistent with several possible models.
Blocking or activation of Eph receptors or ephrins could
cause some cells with $r^2/r^4/r^6$ identity to switch phenotypes are consistent with several possible models.
Blocking or activation of Eph receptors or ephrins could
cause some cells with $r2/r4/r6$ identity to switch to $r3/r5$
identity or could block normal switches in ident Blocking or activation of Eph receptors or ephrins could cause some cells with $r2/r4/r6$ identity to switch to $r3/r5$ identity, or could block normal switches in identity that occur when cells intermingle between presumpti cause some cells with $r2/r4/r6$ identity to switch to $r3/r5$ identity, or could block normal switches in identity that
occur when cells intermingle between presumptive odd
and even segments. Alternatively, there could be a disrup-
tion of the normal restriction of intermingling betw tion of the normal restriction of intermingling between odd and even segments. and even segments. Altern
tion of the normal restri
odd and even segments.
To distinguish betwee In of the normal restriction of intermingling between
d and even segments.
To distinguish between these possibilities, we took
vantage of the extensive mixing of cells during early

odd and even segments.
To distinguish between these possibilities, we took
advantage of the extensive mixing of cells during early
zebrafish development such that when one cell is injected To distinguish between these possibilities, we took
advantage of the extensive mixing of cells during early
zebrafish development, such that when one cell is injected
with $\sqrt{ac^2 RNA}$ at the eight-cell stage its descendan advantage of the extensive mixing of cells during early
zebrafish development, such that when one cell is injected
with $lac\zeta$ RNA at the eight-cell stage, its descendants
have a scattered distribution at neurula stages (zebrafish development, such that when one cell is injected
with $lac\mathcal{Z}$ RNA at the eight-cell stage, its descendants
have a scattered distribution at neurula stages (figure 2*d*).
By co-injecting $lac\mathcal{Z}$ and *ehhrin-B* with *lac* ζ RNA at the eight-cell stage, its descendants
have a scattered distribution at neurula stages (figure 2*d*).
By co-injecting *lac* ζ and *ephrin-B2* RNA, we could ask
whether mosaic activation of EphA4 a have a scattered distribution at neurula stages (figure 2d).
By co-injecting $lac\mathcal{Z}$ and *ephrin-B2* RNA, we could ask
whether mosaic activation of EphA4 and EphB receptors
by this ephrin leads to changes in the identit By co-injecting *lac* χ and *ephrin-B2* RNA, we could ask whether mosaic activation of EphA4 and EphB receptors by this ephrin leads to changes in the identity or movement of cells within $r3/r5$ (Xu *et al.* 1999). Cell whether mosaic activation of EphA4 and EphB receptors
by this ephrin leads to changes in the identity or
movement of cells within r3/r5 (Xu *et al.* 1999). Cells
expressing *ephrin-B2* were found to become restricted to by this ephrin-leads to changes in the identity or movement of cells within r3/r5 (Xu *et al.* 1999). Cells
expressing *ephrin-B2* were found to become restricted to
the boundaries of r3/r5, whereas in r2/r4/r6 expressing
cells are scattered throughout the segment (figure expressing *ephrin-B2* were found to become restricted to
the boundaries of $r3/r5$, whereas in $r2/r4/r6$ expressing
cells are scattered throughout the segment (figure 2*e*).
The expression patterns of markers of $r3/r5$ ide the boundaries of r3/r5, whereas in r2/r4/r6 expressing
cells are scattered throughout the segment (figure 2e).
The expression patterns of markers of r3/r5 identity are
not altered indicating that the mosaic expression of cells are scattered throughout the segment (figure $2e$).
The expression patterns of markers of $r3/r5$ identity are
not altered, indicating that the mosaic expression of
 $e^{b h r i n} R2$ does not alter the identity of the exp The expression patterns of markers of r3/r5 identity are
not altered, indicating that the mosaic expression of
ephrin-B2 does not alter the identity of the expressing or
adjacent cells. Similar cell sorting was observed not altered, indicating that the mosaic expression of *ephrin-B2* does not alter the identity of the expressing or adjacent cells. Similar cell sorting was observed after mosaic expression of truncated ephrin-B2 (lacking t $ephrin-B2$ does not alter the identity of the expressing or adjacent cells. Similar cell sorting was observed after mosaic expression of truncated ephrin-B2 (lacking the adjacent cells. Similar cell sorting was observed after
mosaic expression of truncated ephrin-B2 (lacking the
intracellular domain) that can activate Eph receptors, but
cannot itself transduce a signal $(X_1, et al. 1999)$. Th mosaic expression of truncated ephrin-B2 (lacking the intracellular domain) that can activate Eph receptors, but cannot itself transduce a signal (Xu *et al.* 1999). Thus, mosaic activation of Eph receptors is sufficient f intracellular domain) that can activate Eph receptors, but
cannot itself transduce a signal (Xu *et al.* 1999). Thus,
mosaic activation of Eph receptors is sufficient for cell
sorting. By analogy with the effects of dif cannot itself transduce a signal (Xu et al. 1999). Thus, mosaic activation of Eph receptors is sufficient for cell sorting. By analogy with the effects of differential cell
adhesion (Steinberg 1970), sorting could be explained by
a cell repulsion response to Eph receptor activation that
leads to an affinity difference between r^{3}/r^{5 adhesion (Steinberg 1970), sorting could be explained by
a cell repulsion response to Eph receptor activation that
leads to an affinity difference between $r3/r5$ cells
expressing exogenous ephrin- $R2$ and those that are n a cell repulsion response to Eph receptor activation that
leads to an affinity difference between r3/r5 cells
expressing exogenous ephrin-B2 and those that are not.
Consistent with a repulsion or de-adhesion response leads to an affinity difference between r3/r5 cells
expressing exogenous ephrin-B2 and those that are not.
Consistent with a repulsion or de-adhesion response,
there are larger intercellular spaces at rhombomere expressing exogenous ephrin-B2 and those that are not.
Consistent with a repulsion or de-adhesion response,
there are larger intercellular spaces at rhombomere
boundaries (Lumsden & Keynes 1989: Heyman *et al* Consistent with a repulsion or de-adhesion response, occurring. 1993) where Eph receptor-ephrin-B interactions are
occurring.
In view of evidence that ephrin-B proteins may

transduce signals, we analysed the effect of activating these

BIOLOGICAL

BIOLOGICAL
SCIENCES

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS $\overline{\mathrm{o}}$

BIOLOGICAL
SCIENCES

OYA

 $\overline{\mathbf{R}}$

THE

PHILOSOPHICAL
TRANSACTIONS ₽

Figure 2. Roles of Eph receptors and ephrins in the control of cell movement. The panels summarize the results of different approaches to investigate responses to Eph receptor and ephrin signalling in zebrafish hindbrain patterning and in an *in vitro* Figure 2. Roles of Eph receptors and ephrins in the control of cell movement. The panels summarize the results of different approaches to investigate responses to Eph receptor and ephrin signalling in zebrafish hindbrain approaches to investigate responses to Eph receptor and ephrin signalling in zebrafish hindbrain patterning and in an *in vitro*
system. $(a-c)$ Effects of widespread blocking or ectopic activation of Eph receptors. The ind RNA injection at the one- to two-cell stage *in vivo.* (*a*) Control uninjected embryo showing sharply restricted r3/r5 domains marked by Krox-20 gene expression (blue stain). (*b*) After widespread expression of ephrin-B2 RNA injection at the one- to two-cell stage *in vivo.* (*a*) Control uninjected embryo showing sharply restricted r3/r5 domains
marked by Krox-20 gene expression (blue stain). (*b*) After widespread expression of ephrin-B marked by Krox-20 gene expression (blue stain). (*b*) After widespread expression of ephrin-B2 to ectopically activate Eph
receptors there are ectopic r3/r5 cells and often a fusion of these segments. (*c*) A similar phen expression of truncated EphA4 that will block Eph receptor activation, and activate ephrin-B proteins. (*d–f*) Effects of mosaic activation of Eph receptors or ephrin-B proteins *in vivo*. The indicated proteins were coex expression of truncated EphA4 that will block Eph receptor activation, and activate ephrin-B proteins. (*d–f*) Effects of mosaic activation of Eph receptors or ephrin-B proteins *in vivo*. The indicated proteins were coe activation of Eph receptors or ephrin-B proteins *in vivo*. The indicated proteins were coexpressed with β -galactosidase in a fashion by RNA injection into one cell at the eight-cell stage. The distribution of β -gal marker of r3/r5 (red stain) was visualized. (*d*) Control injection of only lacZ RNA showing mosaic distribution due to
intermingling during early development. (*e*) If RNA encoding ephrin-B2 is co-injected, the expressing of r3/r5 (arrowheads). (*f*) If RNA encoding truncated EphA4 is co-injected, the expressing cells sort to the boundaries of r2/r4/ intermingling during early development. (*e*) If RNA encoding ephrin-B2 is co-injected, the expressing cells sort to the boundar
of r3/r5 (arrowheads). (*f*) If RNA encoding truncated EphA4 is co-injected, the expressing c of r3/r5 (arrowheads). (f) If RNA encoding truncated EphA4 is co-injected, the expressing cells sort to the boundaries of r
r6. $(g-i)$ Fishball assays for cell intermingling *in vitro*. Zebrafish animal caps labelled with fluorescein dextran (green signal) were juxtaposed, cultured overnight and the distribution of cells visualized by confocal
microscopy. (*g*) In a control assay with no co-injected reagents, cell intermingling occurs. (*h* fluorescein dextran (green signal) were juxtaposed, cultured overnight and the distribution of cells visualized by confocal
microscopy. (g) In a control assay with no co-injected reagents, cell intermingling occurs. (*h*) microscopy. (g) In a control assay with no co-injected reagents, cell intermingling occurs. (h) Expression of EphB2 receptor in
one population and of ephrin-B2 in the other leads to bidirectional signalling that restricts **intermingling.** (*j*−*l*) Fishball assays for gap junctional communication *in vitro*. Zebrafish animal caps labelled with rhodamine in vitrorian caps labelled with rhodamine truncated EphB2 in one population and of ephrin-B2 in the other leads to unidirectional signalling, but this does not restrict cell
intermingling. $(j-l)$ Fishball assays for gap junctional communication *in vitro*. Zebrafi intermingling. (*j*-*l*) Fishball assays for gap junctional communication *in vitro*. Zebrafish animal caps labelled with rhodamin dextran (red) or Lucifer yellow (green signal) are juxtaposed and cultured overnight. Trans dextran-labelled cells via gap junctions is seen as a yellow signal. (*j*) In a control assay with no co-injected reagents gap junctional communication.
Junctional communication occurs. (*k*) Bidirectional activation of Ep (*^l*) Unidirectional activation of ephrin-B2 by truncated EphB2 restricts gap junctional communication despite cell intermingling. Data in (*c*) from Xu *et al*. (1995); data in (*^d*^*^f*) from Xu *et al*. (1999); data in (*^g*^*^l*) from Mellitzer *et al*. (1999).

proteins in a mosaic fashion in the hindbrain. We visualized the distribution of cells expressing truncated EphA4 proteins in a mosaic fashion in the hindbrain. We visual-
ized the distribution of cells expressing truncated EphA4
that can activate ephrin-B proteins, but cannot itself trans-
duce a signal $(X_1 \notin al, 1999)$. Cells expres ized the distribution of cells expressing truncated EphA4
that can activate ephrin-B proteins, but cannot itself trans-
duce a signal (Xu *et al.* 1999). Cells expressing truncated
EphA4 were found to sort adjacent to the that can activate ephrin-B proteins, but cannot itself trans-
duce a signal (Xu *et al.* 1999). Cells expressing truncated
EphA4 were found to sort adjacent to the boundaries of r2/
r4/r6 that express endogenous ephrin-B duce a signal (Xu *et al.* 1999). Cells expressing truncated EphA4 were found to sort adjacent to the boundaries of $r2/r4/r6$ that express endogenous ephrin-B proteins, whereas labelled cells are frequently present in central regions of

 $r3/r5$ (figure 2*f*). One explanation is that ephrin-B activation can drive cell sorting via differences in cell–cell $r3/r5$ (figure $2f$). One explanation is that ephrin-B activation can drive cell sorting via differences in cell–cell
affinities due to a repulsion or de-adhesion response $r3/r5$ (figure $2f$). One explanation is that ephrin-B activation can drive cell sorting via differences in cell–cell affinities, due to a repulsion or de-adhesion response similar to that occurring after Enh receptor act activation can drive cell sorting via differences in cell–c
affinities, due to a repulsion or de-adhesion respon-
similar to that occurring after Eph receptor activation.
These findings indicate that mosaic activation of E inities, due to a repulsion or de-adhesion response
nilar to that occurring after Eph receptor activation.
These findings indicate that mosaic activation of Eph
ceptors or of ephrin-B proteins can each drive cell

similar to that occurring after Eph receptor activation.
These findings indicate that mosaic activation of Ephreceptors or of ephrin-B proteins can each drive cell
sorting but it is not clear why the cells expressing ligan These findings indicate that mosaic activation of Eph receptors or of ephrin-B proteins can each drive cell sorting, but it is not clear why the cells expressing ligand

 $($ truncated receptor or ephrin $)$ sort to rhombomere
houndaries rather than within the segment. One possibi-(truncated receptor or ephrin) sort to rhombomere
boundaries rather than within the segment. One possibi-
lity is that interactions of endogenous Enh receptors and boundaries rather than within the segment. One possibility is that interactions of endogenous Eph receptors and boundaries rather than within the segment. One possibility is that interactions of endogenous Eph receptors and
ephrins at rhombomere boundaries create a zone with
lower cell–cell affinities compared with non-boundary lity is that interactions of endogenous Eph receptors and
ephrins at rhombomere boundaries create a zone with
lower cell–cell affinities compared with non-boundary
regions. Due to repulsive interactions, cells expressing ephrins at rhombomere boundaries create a zone with
lower cell–cell affinities compared with non-boundary
regions. Due to repulsive interactions, cells expressing
ligand may have a similar lower affinity for their neighlower cell–cell affinities compared with non-boundary
regions. Due to repulsive interactions, cells expressing
ligand may have a similar lower affinity for their neigh-
hours and thus sort preferentially to the boundaries ligand may have a similar lower affinity for their neighbours and thus sort preferentially to the boundaries.

BIOLOGICAL
SCIENCES CIENCES

 \mathbf{R} \mathbf{E} HL

PHILOSOPHICAL
TRANSACTIONS

BIOLOGICAL

OYA

 $\overline{\mathbf{R}}$

THE

PHILOSOPHICAL
TRANSACTIONS

**6. REGULATION OF CELL INTERMINGLING 6. REGULATION OF CELL INTERMINGLING
AND COMMUNICATION BY EPH RECEPTORS** N OF CELL INTER
CATION BY EPH R
AND EPHRINS

AND EPHRINS
The finding that mosaic activation of Eph receptors or The finding that mosaic activation of Eph receptors or
of ephrin-B proteins can drive cell sorting suggests that
they may each trigger responses that affect cell affinities The finding that mosaic activation of Eph receptors or
of ephrin-B proteins can drive cell sorting suggests that
they may each trigger responses that affect cell affinities.
This raises the question as to whether hidirecti of ephrin-B proteins can drive cell sorting suggests that
they may each trigger responses that affect cell affinities.
This raises the question as to whether bidirectional
activation at interfaces of Enh recentor-enhrin ex they may each trigger responses that affect cell affinities.
This raises the question as to whether bidirectional
activation at interfaces of Eph receptor–ephrin expression
domains has an important role. To test this we es \bigcirc activation at interfaces of Eph receptor–ephrin expression
domains has an important role. To test this, we estabactivation at interfaces of Eph receptor–ephrin expression
domains has an important role. To test this, we estab-
lished and used an *in vitro* assay (Mellitzer *et al.* 1999).
One-cell stage zebrafish embryos are injected domains has an important role. To test this, we established and used an *in vitro* assay (Mellitzer *et al.* 1999).
One-cell stage zebrafish embryos are injected with fluor-
escent lineage tracer and then animal cans disse lished and used an *in vitro* assay (Mellitzer *et al.* 1999).
One-cell stage zebrafish embryos are injected with fluor-
escent lineage tracer and then animal caps dissected at
the 1000-cell stage. After inxtanosing two a One-cell stage zebrafish embryos are injected with fluorescent lineage tracer and then animal caps dissected at the 1000-cell stage. After juxtaposing two animal caps, escent lineage tracer and then animal caps dissected at
the 1000-cell stage. After juxtaposing two animal caps,
one labelled with rhodamine dextran and the other with
fluorescein dextran, they rapidly adhere to form a fish the 1000-cell stage. After juxtaposing two animal caps,
one labelled with rhodamine dextran and the other with
fluorescein dextran, they rapidly adhere to form a fishball
that is cultured overnight. Confocal microscopy rev one labelled with rhodamine dextran and the other with
fluorescein dextran, they rapidly adhere to form a fishball
that is cultured overnight. Confocal microscopy reveals
that intermingling occurs between control animal ca fluorescein dextran, they rapidly adhere to form a fishball
that is cultured overnight. Confocal microscopy reveals
that intermingling occurs between control animal caps
(figure $2g$). In contrast when cells expressing en that is cultured overnight. Confocal microscopy reveals
that intermingling occurs between control animal caps
(figure 2*g*). In contrast when cells expressing ephrin-B2 that intermingling occurs between control animal caps
(figure 2g). In contrast when cells expressing ephrin-B2
are juxtaposed with cells expressing EphB2 and/or
EphA4 there is a major restriction of interminating (figure 2g). In contrast when cells expressing ephrin-B2
are juxtaposed with cells expressing EphB2 and/or
EphA4, there is a major restriction of intermingling
between the cell populations (figure 2h) This restriction are juxtaposed with cells expressing EphB2 and/or
EphA4, there is a major restriction of intermingling
between the cell populations (figure 2*h*). This restriction
does not occur if Eph receptor or ephrin is omitted from EphA4, there is a major restriction of intermingling accessive and between the cell populations (figure 2h). This restriction side does not occur if Eph receptor or ephrin is omitted from exame of the two cell populations between the cell populations (figure 2*h*). This restriction
does not occur if Eph receptor or ephrin is omitted from
one of the two cell populations, indicating that activation
of any endogenous EphB receptors or ephrin-B does not occur if Eph receptor or ephrin is omitted from
one of the two cell populations, indicating that activation
of any endogenous EphB receptors or ephrin-B proteins is not sufficient to restrict cell intermingling. To test whether of any endogenous EphB receptors or ephrin-B proteins is
not sufficient to restrict cell intermingling. To test whether
the restriction of cell intermingling requires bidirectional
activation, we carried out fishball assay not sufficient to restrict cell intermingling. To test whether
the restriction of cell intermingling requires bidirectional
activation, we carried out fishball assays in which there
was unidirectional activation of EphA4 o the restriction of cell intermingling requires bidirectional
activation, we carried out fishball assays in which there
was unidirectional activation of EphA4 or EphB2
receptor by truncated ephrin-B2 or of ephrin-B2 by activation, we carried out fishball assays in which there
was unidirectional activation of EphA4 or EphB2
receptor by truncated ephrin-B2, or of ephrin-B2 by
truncated EphB2. We found that after unidirectional was unidirectional activation of EphA4 or EphB2
receptor by truncated ephrin-B2, or of ephrin-B2 by
truncated EphB2. We found that after unidirectional
signalling there is extensive interminaling between the receptor by truncated ephrin-B2, or of ephrin-B2 by truncated EphB2. We found that after unidirectional signalling there is extensive intermingling between the truncated EphB2. We found that after unidirectional tis
signalling there is extensive intermingling between the
two cell populations (figure 2*i*) (Mellitzer *et al.* 1999). A
caveat is raised by the possibility that the i signalling there is extensive intermingling between the
two cell populations (figure 2i) (Mellitzer *et al.* 1999). A
caveat is raised by the possibility that the intracellular
domain of Eph receptor or of ephrin-B is req two cell populations (figure 2*i*) (Mellitzer *et al.* 1999). A caveat is raised by the possibility that the intracellular domain of Eph receptor or of ephrin-B is required for them to be fully active as ligands for examp caveat is raised by the possibility that the intracellular
domain of Eph receptor or of ephrin-B is required for
them to be fully active as ligands, for example by
mediating interactions with intracellular proteins that domain of Eph receptor or of ephrin-B is required for
them to be fully active as ligands, for example by
mediating interactions with intracellular proteins that
could cluster them (Hock *et al.* 1998; Torres *et al.* 1998 them to be fully active as ligands, for example by
mediating interactions with intracellular proteins that
could cluster them (Hock *et al.* 1998; Torres *et al.* 1998;
Bruckner *et al.* 1999; Buchert *et al.* 1999; Lin *e* mediating interactions with intracellular proteins that
could cluster them (Hock *et al.* 1998; Torres *et al.* 1998;
Bruckner *et al.* 1999; Buchert *et al.* 1999; Lin *et al.* 1999). To
test this we took advantage of the could cluster them (Hock *et al.* 1998; Torres *et al.* 1998; Bruckner *et al.* 1999; Buchert *et al.* 1999; Lin *et al.* 1999). To test this, we took advantage of the different binding specificities of Eph recentors and e Bruckner *et al.* 1999; Buchert *et al.* 1999; Lin *et al.* 1999). To test this, we took advantage of the different binding specificities of Eph receptors and ephrins to reconstruct bidirectional signalling from unidirect test this, we took advantage of the different binding
specificities of Eph receptors and ephrins to reconstruct
bidirectional signalling from unidirectional activation in
each direction using truncated Eph receptor and eph specificities of Eph receptors and ephrins to reconstruct
bidirectional signalling from unidirectional activation in
each direction using truncated Eph receptor and ephrin
as ligands Cell intermingling was restricted in th bidirectional signalling from unidirectional activation in each direction using truncated Eph receptor and ephrin as ligands. Cell intermingling was restricted in this situaeach direction using truncated Eph receptor and ephrin
as ligands. Cell intermingling was restricted in this situa-
tion (Mellitzer *et al.* 1999). Thus, bidirectional signalling
between two cell populations restricts thei as ligands. Cell intermingling was restricted in this situation (Mellitzer *et al.* 1999). Thus, bidirectional signalling between two cell populations restricts their intermingling, but unidirectional signalling does not tion (Mellitzer *et al.* 1999). Thus, bidirective two cell populations restricts the but unidirectional signalling does not.
A further mechanism that may stabil tween two cell populations restricts their intermingling,
t unidirectional signalling does not.
A further mechanism that may stabilize patterns in the
odbrain is suggested by the observation that there is a

but unidirectional signalling does not.
A further mechanism that may stabilize patterns in the
hindbrain is suggested by the observation that there is a
disruption to cell communication via gan junctions across A further mechanism that may stabilize patterns in the
hindbrain is suggested by the observation that there is a
disruption to cell communication via gap junctions across
rhombomere boundaries (Martinez et al. 1999) Gap j hindbrain is suggested by the observation that there is a disruption to cell communication via gap junctions across rhombomere boundaries (Martinez *et al.* 1992). Gap junctions form by assembly of connexin proteins into c disruption to cell communication via gap junctions across
rhombomere boundaries (Martinez *et al.* 1992). Gap junc-
tions form by assembly of connexin proteins into channels
between cells that allow passage of $\lt 1.2 \text{ k$ rhombomere boundaries (Martinez *et al.* 1992). Gap junctions form by assembly of connexin proteins into channels between cells that allow passage of \lt 1.2 kDa molecules (Bruzzone *et al*. 1996; Kumar & Gilula 1996), and can be

through these channels. The developmental roles of gap junctional communication are currently unclear, but it is through these channels. The developmental roles of gap
junctional communication are currently unclear, but it is
likely that by allowing cells to share low molecular
weight secondary messengers they enable coordination of junctional communication are currently unclear, but it is
likely that by allowing cells to share low molecular
weight secondary messengers they enable coordination of
cell proliferation or differentiation. Thus, disruption likely that by allowing cells to share low molecular
weight secondary messengers they enable coordination of
cell proliferation or differentiation. Thus, disruption to
gap iunctional communication may be essential for weight secondary messengers they enable coordination of
cell proliferation or differentiation. Thus, disruption to
gap junctional communication may be essential for
adiacent cell populations to acquire differences in fate cell proliferation or differentiation. Thus, disruption to
gap junctional communication may be essential for
adjacent cell populations to acquire differences in fate or
proliferation. It seemed possible that the larger int gap junctional communication may be essential for
adjacent cell populations to acquire differences in fate or
proliferation. It seemed possible that the larger inter-
cellular spaces at rhombomere boundaries (Lumsden & adjacent cell populations to acquire differences in fate or
proliferation. It seemed possible that the larger inter-
cellular spaces at rhombomere boundaries (Lumsden &
Keynes 1989: Heyman *et al.* 1993) are due to cell re proliferation. It seemed possible that the larger inter-
cellular spaces at rhombomere boundaries (Lumsden &
Keynes 1989; Heyman *et al.* 1993) are due to cell repul-
sion mediated by Eph receptor-ephrin interactions and cellular spaces at rhombomere boundaries (Lumsden &
Keynes 1989; Heyman *et al.* 1993) are due to cell repul-
sion mediated by Eph receptor-ephrin interactions, and
that this prevents stable cell contacts required for gap Keynes 1989; Heyman *et al.* 1993) are due to cell repulsion mediated by Eph receptor-ephrin interactions, and that this prevents stable cell contacts required for gap iunction assembly. We tested this in fishball assays sion mediated by Eph receptor–ephrin interactions, and
that this prevents stable cell contacts required for gap
junction assembly. We tested this in fishball assays in
which one animal can labelled with Lucifer vellow (gre that this prevents stable cell contacts required for gap
junction assembly. We tested this in fishball assays in
which one animal cap labelled with Lucifer yellow (green
in the confocal image) is juxtanosed with another junction assembly. We tested this in fishball assays in
which one animal cap labelled with Lucifer yellow (green
in the confocal image), is juxtaposed with another
labelled with rhodamine dextran (red fluorescence) which one animal cap labelled with Lucifer yellow (green
in the confocal image), is juxtaposed with another
labelled with rhodamine dextran (red fluorescence)
(Mellitzer et al. 1999) In control fishballs Lucifer yellow in the confocal image), is juxtaposed with another
labelled with rhodamine dextran (red fluorescence)
(Mellitzer *et al.* 1999). In control fishballs, Lucifer yellow
transfers into rhodamine dextran-labelled cells (the labelled with rhodamine dextran (red fluorescence)
(Mellitzer *et al.* 1999). In control fishballs, Lucifer yellow
transfers into rhodamine dextran-labelled cells (the
overlan leading to a vellow signal) indicating that g (Mellitzer *et al.* 1999). In control fishballs, Lucifer yellow transfers into rhodamine dextran-labelled cells (the overlap leading to a yellow signal), indicating that gap transfers into rhodamine dextran-labelled cells (the overlap leading to a yellow signal), indicating that gap junctions have formed between the cell populations (figure 2i). However, when $\text{Fph} A4$ or $\text{Fph} B2$ were overlap leading to a yellow signal), indicating that gap
junctions have formed between the cell populations
(figure 2*j*). However, when EphA4 or EphB2 were
expressed in one animal cap and ephrin-B² in the other junctions have formed between the cell populations
(figure 2*j*). However, when EphA4 or EphB2 were
expressed in one animal cap and ephrin-B2 in the other,
Lucifer vellow did not diffuse between the cell popula-(figure 2*j*). However, when EphA4 or EphB2 were
expressed in one animal cap and ephrin-B2 in the other,
Lucifer yellow did not diffuse between the cell popula-
tions (figure 2*k*). Furthermore, gan iunction formation expressed in one animal cap and ephrin-B2 in the other,
Lucifer yellow did not diffuse between the cell popula-
tions (figure 2*k*). Furthermore, gap junction formation
was prevented by unidirectional activation of ephrin-Lucifer yellow did not diffuse between the cell populations (figure 2*k*). Furthermore, gap junction formation was prevented by unidirectional activation of ephrin-B2 or of EphR2 by truncated ligand (figure 2*h*) (Mellitz tions (figure 2*k*). Furthermore, gap junction formation
was prevented by unidirectional activation of ephrin-B2
or of EphB2 by truncated ligand (figure 2*l*) (Mellitzer *et*
 $\frac{d}{dt}$ 1999) was prevented by unidirectional activation of ephrin-B2
or of EphB2 by truncated ligand (figure 2*l*) (Mellitzer *et*
al. 1999).

detected by the ability of Lucifer yellow to diffuse

These results can be explained by a model in which the activation of Eph receptor or ephrin each triggers a repul-These results can be explained by a model in which the activation of Eph receptor or ephrin each triggers a repulsion or de-adhesion response. At the interface of cells expressing Eph receptor and cells expressing ephrin-B activation of Eph receptor or ephrin each triggers a repulsion or de-adhesion response. At the interface of cells expressing Ephrin-B, bidirectional activation leads to a mutual repulsion that sion or de-adhesion response. At the interface of cells
expressing Eph receptor and cells expressing ephrin-B,
bidirectional activation leads to a mutual repulsion that
prevents the movement of each cell population into th expressing Eph receptor and cells expressing ephrin-B,
bidirectional activation leads to a mutual repulsion that
prevents the movement of each cell population into the
other and restricts gap junction formation. In the hin bidirectional activation leads to a mutual repulsion that
prevents the movement of each cell population into the
other, and restricts gap junction formation. In the hind-
brain, this coordinated restriction of cell intermi prevents the movement of each cell population into the
other, and restricts gap junction formation. In the hind-
brain, this coordinated restriction of cell intermingling
and communication may be crucial for the stabilizat other, and restricts gap junction formation. In the hind-
brain, this coordinated restriction of cell intermingling
and communication may be crucial for the stabilization
of segmental patterns. In contrast, unidirectional brain, this coordinated restriction of cell intermingling
and communication may be crucial for the stabilization
of segmental patterns. In contrast, unidirectional signal-
ling will renel one population but the cells expre and communication may be crucial for the stabilization
of segmental patterns. In contrast, unidirectional signal-
ling will repel one population, but the cells expressing
truncated Enh receptor or enhrin are not repelled a of segmental patterns. In contrast, unidirectional signal-
ling will repel one population, but the cells expressing
truncated Eph receptor or ephrin are not repelled, and
can invade adiacent territory, leading to interming ling will repel one population, but the cells expressing
truncated Eph receptor or ephrin are not repelled, and
can invade adjacent territory, leading to intermingling. However, repulsion of only one of the two cell populacan invade adjacent territory, leading to intermingling.
However, repulsion of only one of the two cell popula-
tions is sufficient to prevent stable cell–cell contacts
required for gan junction assembly leading to an unco However, repulsion of only one of the two cell populations is sufficient to prevent stable cell–cell contacts required for gap junction assembly, leading to an uncou-
pling of restrictions to cell mixing and communication tions is sufficient to prevent stable cell–cell contacts
required for gap junction assembly, leading to an uncou-
pling of restrictions to cell mixing and communication.
Since truncated forms of Enh recentors exist due to required for gap junction assembly, leading to an uncoupling of restrictions to cell mixing and communication.
Since truncated forms of Eph receptors exist due to alter-
native splicing (reviewed by Pasquale 1997) it is po pling of restrictions to cell mixing and communication.
Since truncated forms of Eph receptors exist due to alternative splicing (reviewed by Pasquale 1997) it is possible
that unidirectional activation occurs in vive It w Since truncated forms of Eph receptors exist due to alternative splicing (reviewed by Pasquale 1997) it is possible that unidirectional activation occurs *in vivo*. It will be native splicing (reviewed by Pasquale 1997) it is possible
that unidirectional activation occurs *in vivo*. It will be
interesting to examine whether this could prevent gap
innetional communication between interminaled cel that unidirectional activation occurs *in vivo*. It will be interesting to examine whether this could prevent gap junctional communication between intermingled cell populations populations.

**7. RELATIONSHIPS BETWEEN CELL MIXING ELATIONSHIPS BETWEEN CELL MIXING
AND IDENTITY IN THE HINDBRAIN**

The work discussed above suggests that Eph receptors
dephrims are involved in restricting cell interminaling **ENTITY IN THE HINDBRAIN**
The work discussed above suggests that Eph receptors
and ephrins are involved in restricting cell intermingling
between hindbrain segments. In view of the possibility The work discussed above suggests that Eph receptors
and ephrins are involved in restricting cell intermingling
between hindbrain segments. In view of the possibility
that such restrictions act in parallel with a plasticit and ephrins are involved in restricting cell intermingling
between hindbrain segments. In view of the possibility
that such restrictions act in parallel with a plasticity and local regulation of segmental identity, it is important to that such restrictions act in parallel with a plasticity and
local regulation of segmental identity, it is important to
consider why disruptions to $r3/r5$ organization are seen
after widespread expression of truncated \text local regulation of segmental identity, it is important to
consider why disruptions to $r3/r5$ organization are seen
after widespread expression of truncated EphA4 (Xu
et al. 1995). Ectonic cells with $r3/r5$ identity are n consider why disruptions to r3/r5 organization are seen
after widespread expression of truncated EphA4 (Xu
et al. 1995). Ectopic cells with r3/r5 identity are never

BIOLOGICAI
CCIENCEC

DYXI

 $\overline{\mathbf{R}}$

HLI

PHILOSOPHICAL
TRANSACTIONS

coherent groups contiguous with r3/r5. After injection of RNA encoding truncated EphA4 into one cell at the coherent groups contiguous with r3/r5. After injection of RNA encoding truncated EphA4 into one cell at the eight-cell stage, r3/r5 were altered in shape in only 5% of the embryos compared with $> 50\%$ after injection at RNA encoding truncated EphA4 into one cell at the eight-cell stage, $r3/r5$ were altered in shape in only 5% of the embryos, compared with $> 50\%$ after injection at the two-cell stage. These data are consistent with the eight-cell stage, r3/r5 were altered in shape in only 5% of
the embryos, compared with $> 50\%$ after injection at
the two-cell stage. These data are consistent with the
blocking of EphA4 in an increasing proportion of r the embryos, compared with $> 50\%$ after injection at
the two-cell stage. These data are consistent with the
blocking of EphA4 in an increasing proportion of r3/r5
cells causing a greater number to intermingle into r2/r4 the two-cell stage. These data are consistent with the blocking of EphA4 in an increasing proportion of $r3/r5$ cells causing a greater number to intermingle into $r2/r4/r6$ It can be envisaged that local community effects w blocking of EphA4 in an increasing proportion of $r3/r5$ cells causing a greater number to intermingle into $r2/r4$ r6. It can be envisaged that local community effects will cells causing a greater number to intermingle into $r2/r4$
r6. It can be envisaged that local community effects will
switch isolated ectopic $r3/r5$ cells to an even-numbered
identity whereas larger groups of ectopic cells r6. It can be envisaged that local community effects will
switch isolated ectopic r3/r5 cells to an even-numbered
identity, whereas larger groups of ectopic cells can main-
tain their identity. According to this view. Enh identity, whereas larger groups of ectopic cells can main-
tain their identity. According to this view, Eph receptor-
There is ev identity, whereas larger groups of ectopic cells can maintain their identity. According to this view, Eph receptor-
ephrin interactions may be required *in vivo* to prevent the
intermingling of cells from being so excessiv tain their identity. According to this view, Eph receptor-
ephrin interactions may be required *in vivo* to prevent the
intermingling of cells from being so excessive that identity
switching mechanisms are not able to mai ephrin interactions may be required *in vivo* to prevent the intermingling of cells from being so excessive that identity switching mechanisms are not able to maintain sharp patterns. It will be important to test this mode intermingling of cells from being so excessive that identity \Box switching mechanisms are not able to maintain sharp \rightarrow patterns. It will be important to test this model by transswitching mechanisms are not able to maintain sharp
patterns. It will be important to test this model by trans-
planting groups of cells between rhombomeres, and
analysing the relationship between cell intermingling and patterns. It will be important to test this model by trans-
planting groups of cells between rhombomeres, and
analysing the relationship between cell intermingling and
identity for example using green fluorescent protein planting groups of cells between rhombomeres, and
analysing the relationship between cell intermingling and
identity, for example using green fluorescent protein
reporter genes to visualize cell identity in living embryos analysing the relationship between cell intermingling and
identity, for example using green fluorescent protein
reporter genes to visualize cell identity in living embryos.
Since the restriction of cell intermingling betwe

entity, for example using green fluorescent protein
porter genes to visualize cell identity in living embryos.
Since the restriction of cell intermingling between
pombomeres by Eph receptors and ephrins requires that reporter genes to visualize cell identity in living embryos.
Since the restriction of cell intermingling between
rhombomeres by Eph receptors and ephrins requires that
they are segmentally expressed it is important to unde Since the restriction of cell intermingling between
rhombomeres by Eph receptors and ephrins requires that
they are segmentally expressed, it is important to understand how this expression is regulated. Currently, nothing they are segmentally expressed, it is important to understand how this expression is regulated. Currently, nothing
is known regarding the regulation of ephrin-B gene
expression but $\mathit{F}bhA4$ gene expression has been show stand how this expression is regulated. Currently, nothing
is known regarding the regulation of ephrin-B gene
expression, but $EphA4$ gene expression has been shown to
be under the direct control of the Krox-20 zinc finger is known regarding the regulation of ephrin-B gene
expression, but $EphA4$ gene expression has been shown to
be under the direct control of the Krox-20 zinc finger
transcription factor (Theil *et al.* 1998). In addition to expression, but *EphA4* gene expression has been shown to
be under the direct control of the Krox-20 zinc finger
transcription factor (Theil *et al.* 1998). In addition to be under the direct control of the Krox-20 zinc finger
transcription factor (Theil *et al.* 1998). In addition to
being required for the formation of definitive r3/r5
(Schneider-Maunoury *et al.* 1993: Swiatek & Gridley transcription factor (Theil *et al.* 1998). In addition to
being required for the formation of definitive r3/r5
(Schneider-Maunoury *et al.* 1993; Swiatek & Gridley
1993) Krox-20 requires the expression of the *Hora*² a being required for the formation of definitive r3/r5
(Schneider-Maunoury *et al.* 1993; Swiatek & Gridley
1993), Krox-20 regulates the expression of the *Hoxa2* and
Hoxh2 genes (Sham *et al.* 1993: Nonchey *et al.* 1996) *(Schneider-Maunoury <i>et al.* 1993; Swiatek & Gridley 1993), Krox-20 regulates the expression of the *Hoxa2* and *Hoxb2* genes (Sham *et al.* 1993; Nonchev *et al.* 1996). There is thus a coupling between segmentation $A-P$ 1993), Krox-20 regulates the expression of the *Hoxa2* and $H \circ x b^2$ genes (Sham *et al.* 1993; Nonchev *et al.* 1996). There is thus a coupling between segmentation, A-P positional specification and the segmental restric Hoxb2 genes (Sham *et al.* 1993; Nonchev *et al.* 1996). There is thus a coupling between segmentation, $A-P$ positional specification and the segmental restriction of cell moveis thus a coupling between segmentation, A–P positional
specification and the segmental restriction of cell move-
ment, and this may be important for the maintenance of
segmental domains with distinct identity. Furthermore specification and the segmental restriction of cell move-
ment, and this may be important for the maintenance of
segmental domains with distinct identity. Furthermore,
there is evidence that expression of $FbbA47$ in r^3/r ment, and this may be important for the maintenance of
segmental domains with distinct identity. Furthermore,
there is evidence that expression of *EphA7* in r3/r5 is
downstream of *Hoxa*? (Taneia *et al.* 1996) and that o segmental domains with distinct identity. Furthermore,
there is evidence that expression of *EphA7* in r3/r5 is
downstream of *Hoxa2* (Taneja *et al.* 1996), and that of
EphA2 in r4 is downstream of *Hoxal* and *Hoxh1* (there is evidence that expression of *EphA7* in r3/r5 is
downstream of *Hoxa2* (Taneja *et al.* 1996), and that of
EphA2 in r4 is downstream of *Hoxal* and *Hoxb1* (Studer *et*
al. 1998) indicating that there is also downstream of *Hoxa2* (Taneja *et al.* 1996), and that of *EphA2* in r4 is downstream of *Hoxa1* and *Hoxb1* (Studer *et al.* 1998), indicating that there is also coupling at a different step of the regulatory bierarchy Ho $EphA2$ in r4 is downstream of *Hoxal* and *Hoxbl* (Studer *et al.* 1998), indicating that there is also coupling at a different step of the regulatory hierarchy. However, the role of these Eph receptors in the hindbrain is currently unknown.

8. ROLES IN RESTRICTING NEURAL CREST CELL MIGRATION

EXAMPLE 1998
in most if not all regions of the developing embryo (Gale
 et al. 1996a), raises the question as to whether they have The complex expression of Eph receptors and ephrins
in most if not all regions of the developing embryo (Gale
et al. 1996*a*) raises the question as to whether they have
general roles in stabilizing patterns of tissue or The complex expression of Eph receptors and ephrins in most if not all regions of the developing embryo (Gale *et al.* 1996*a*) raises the question as to whether they have general roles in stabilizing patterns of tissue organization.
Although little is currently known rega *et al.* 1996*a*) raises the question as to whether they have general roles in stabilizing patterns of tissue organization.
Although little is currently known regarding their roles in many tissues, there is evidence that E $\overline{ }$ general roles in stabilizing patterns of tissue organization.
Although little is currently known regarding their roles in
many tissues, there is evidence that Eph receptors and
enhrins are involved in restricting the movem Although little is currently known regarding their roles in
many tissues, there is evidence that Eph receptors and
ephrins are involved in restricting the movement of cells
in the neural crest and during somite formation many tissues, there is evidence that Eph receptors and ephrins are involved in restricting the movement of cells in the neural crest and during somite formation.

Neural crest cells arise by the delamination of cells in the neural crest and during somite formation.
Neural crest cells arise by the delamination of cells
from the dorsolateral edge of the neural epithelium, and
migrate along a variety of pathways to specific destina-Neural crest cells arise by the delamination of cells
from the dorsolateral edge of the neural epithelium, and
migrate along a variety of pathways to specific destina-
tions (Le Douarin 1982: Bronner-Fraser 1993). In chick from the dorsolateral edge of the neural epithelium, and
migrate along a variety of pathways to specific destina-
tions (Le Douarin 1982; Bronner-Fraser 1993). In chick
and rodent embryos, trunk neural crest cells migrate migrate along a variety of pathways to specific destinations (Le Douarin 1982; Bronner-Fraser 1993). In chick and rodent embryos, trunk neural crest cells migrate tions (Le Douarin 1982; Bronner-Fraser 1993). In chick
and rodent embryos, trunk neural crest cells migrate
through the anterior but not the posterior half of each
somite (Rickmann et al. 1985; Bronner-Fraser 1986) and and rodent embryos, trunk neural crest cells migrate
through the anterior but not the posterior half of each
somite (Rickmann *et al.* 1985; Bronner-Fraser 1986), and
this segmental migration underlies formation of the through the anterior but not the posterior half of each somite (Rickmann *et al.* 1985; Bronner-Fraser 1986), and this segmental migration underlies formation of the this segmental migration underlies formation of the *Phil. Trans. R. Soc. Lond.* B (2000)

998 Q. Xu and others *Eph receptors and ephrins in segmental patterning*
found to be isolated within $r2/r4/r6$, but rather form repeated pattern of dorsal root and sympathetic ganglia
coherent groups contiguous with r3/r5. repeated pattern of dorsal root and sympathetic ganglia
(Kalcheim & Teillet 1989: Goldstein & Kalcheim 1991) repeated pattern of dorsal root and sympathetic ganglia
(Kalcheim & Teillet 1989; Goldstein & Kalcheim 1991).
If the orientation of somites is reversed along the A–P If the orientation of somites is reversed along the $A-P$ (Kalcheim & Teillet 1989; Goldstein & Kalcheim 1991).
If the orientation of somites is reversed along the A–P
axis, there is a corresponding reversal of the pattern of
migration of neural crest cells (Bronner-Fraser & Ste If the orientation of somites is reversed along the A–P
axis, there is a corresponding reversal of the pattern of
migration of neural crest cells (Bronner-Fraser & Stern
1991) A similar restriction imposed by the somites axis, there is a corresponding reversal of the pattern of
migration of neural crest cells (Bronner-Fraser & Stern
1991). A similar restriction imposed by the somites also
occurs for trunk motor axons (Keynes & Stern 1984) migration of neural crest cells (Bronner-Fraser & Stern 1991). A similar restriction imposed by the somites also occurs for trunk motor axons (Keynes & Stern 1984). Somites therefore guide neural crest cells and motor 1991). A similar restriction imposed by the somites also occurs for trunk motor axons (Keynes & Stern 1984).
Somites therefore guide neural crest cells and motor axons perhans due to attractive cues within the anterior occurs for trunk motor axons (Keynes & Stern 1984).
Somites therefore guide neural crest cells and motor axons, perhaps due to attractive cues within the anterior
half of each somite and/or repulsive cues within the Somites therefore guide neural crest cells and motor axons, perhaps due to attractive cues within the anterior half of each somite and/or repulsive cues within the nosterior half axons, perhaps
half of each so
posterior half.
There is evid If of each somite and/or repulsive cues within the
sterior half.
There is evidence implicating a number of molecules
pressed in the posterior half of somites in the restriction

posterior half.
There is evidence implicating a number of molecules
expressed in the posterior half of somites in the restriction
of neural crest cells, and/or motor axons, including a There is evidence implicating a number of molecules
expressed in the posterior half of somites in the restriction
of neural crest cells and/or motor axons, including a
neanut lectin-hinding glyconrotein type IX collagen an expressed in the posterior half of somites in the restriction
of neural crest cells and/or motor axons, including a
peanut lectin-binding glycoprotein, type IX collagen and
F-spondin (Stern et al. 1986; Davies et al. 1990; of neural crest cells and/or motor axons, including a
peanut lectin-binding glycoprotein, type IX collagen and
F-spondin (Stern *et al.* 1986; Davies *et al.* 1990; Krull *et al.*
1995; Ring *et al.* 1996; Debby-Brafman *e* F-spondin (Stern *et al.* 1986; Davies *et al.* 1990; Krull *et al.* 1995; Ring *et al.* 1996; Debby-Brafman *et al.* 1999). In addition to these factors, ephrin-B proteins (ephrin-B1 in the chick ephrin-B2 in rodents) ar 1995; Ring *et al.* 1996; Debby-Brafman *et al.* 1999). In addition to these factors, ephrin-B proteins (ephrin-B1 in the chick, ephrin-B2 in rodents) are expressed in the posterior half of somites and *in vitro* strine a addition to these factors, ephrin-B proteins (ephrin-Bl in
the chick, ephrin-B2 in rodents) are expressed in the
posterior half of somites, and *in vitro* stripe assays show
that they renel trunk neural crest cells and mot the chick, ephrin-B2 in rodents) are expressed in the posterior half of somites, and *in vitro* stripe assays show that they repel trunk neural crest cells and motor axons that express EphB recentors (Krull *et al.* 1997: posterior half of somites, and *in vitro* stripe assays show
that they repel trunk neural crest cells and motor axons
that express EphB receptors (Krull *et al.* 1997; Wang &
Anderson 1997) As observed in stripe assays of that they repel trunk neural crest cells and motor axons
that express EphB receptors (Krull *et al.* 1997; Wang &
Anderson 1997). As observed in stripe assays of retinal that express EphB receptors (Krull *et al.* 1997; Wang & Anderson 1997). As observed in stripe assays of retinal axons (Walter *et al.* 1987), the rate of neural crest cell migration is not slower on a uniform ephrin subst Anderson 1997). As observed in stripe assays of retinal axons (Walter *et al.* 1987), the rate of neural crest cell migration is not slower on a uniform ephrin substrate, but rather they act as directional repellents when axons (Walter *et al.* 1987), the rate of neural crest cell
migration is not slower on a uniform ephrin substrate, but
rather they act as directional repellents when presented at
houndaries or in a gradient (Krull *et al.* migration is not slower on a uniform ephrin substrate, but
rather they act as directional repellents when presented at
boundaries or in a gradient (Krull *et al.* 1997; Wang &
Anderson 1997) Furthermore *in nino* blocking rather they act as directional repellents when presented at boundaries or in a gradient (Krull *et al.* 1997; Wang & Anderson 1997). Furthermore, *in vivo* blocking experiments in chick trunk explants show that EnhB-enhrin boundaries or in a gradient (Krull *et al.* 1997; Wang & Anderson 1997). Furthermore, *in vivo* blocking experiments in chick trunk explants show that EphB – ephrin-B interactions are required to prevent neural crest cells Anderson 1997). Furthermore, *in vivo* blocking experiments in chick trunk explants show that EphB-ephrin-B interactions are required to prevent neural crest cells from entering the posterior half of somites (Krull *et al* ments in chick trunk explants show that EphB-ephrin-B
interactions are required to prevent neural crest cells
from entering the posterior half of somites (Krull *et al.*
1997). However, a null mutation in *ephrin-B2* does from entering the posterior half of somites (Krull *et al.* 1997). However, a null mutation in *ephrin-B2* does not affect neural crest or motor axon pathfinding, and this 1997). However, a null mutation in *ephrin-B2* does not affect neural crest or motor axon pathfinding, and this may be due to the continued presence of other guidance cues in somites (Wang *et al.* 1998) affect neural crest or motor axon
may be due to the continued prese
cues in somites (Wang *et al.* 1998).
Segmental migration of neural c ay be due to the continued presence of other guidance
es in somites (Wang *et al.* 1998).
Segmental migration of neural crest also occurs in the
anchial region of vertebrate embryos, from rhombo-

cues in somites (Wang *et al.* 1998).
Segmental migration of neural crest also occurs in the
branchial region of vertebrate embryos, from rhombo-Segmental migration of neural crest also occurs in the
branchial region of vertebrate embryos, from rhombo-
meres to specific branchial arches where they differentiate
to form specific patterns of bones and cartilage (Lums branchial region of vertebrate embryos, from rhombomeres to specific branchial arches where they differentiate
to form specific patterns of bones and cartilage (Lumsden
et al. 1991: Sechrist et al. 1993: Birgbauer et al. 1 meres to specific branchial arches where they differentiate
to form specific patterns of bones and cartilage (Lumsden
et al. 1991; Sechrist *et al.* 1993; Birgbauer *et al.* 1995;
Kontges & Lumsden 1996; Saldivar *et al.* to form specific patterns of bones and cartilage (Lumsden *et al.* 1991; Sechrist *et al.* 1995; Kontges & Lumsden 1996; Saldivar *et al.* 1996). There is et al. 1991; Sechrist et al. 1993; Birgbauer et al. 1995; Kontges & Lumsden 1996; Saldivar et al. 1996). There is evidence from transplantation experiments and studies of Hax gene expression for both segmental specificatio Kontges & Lumsden 1996; Saldivar *et al.* 1996). There is
evidence from transplantation experiments and studies of
Hox gene expression for both segmental specification and
plasticity in the A-P identity of branchial neur evidence from transplantation experiments and studies of Hox gene expression for both segmental specification and plasticity in the A-P identity of branchial neural crest cells (Noden 1983: Hunt *et al.* 1991–1998: Saldi Hox gene expression for both segmental specification and plasticity in the A-P identity of branchial neural crest cells (Noden 1983; Hunt *et al.* 1991, 1998; Saldivar *et al.* 1996). In an analogous manner to that discuss cells (Noden 1983; Hunt *et al.* 1991, 1998; Saldivar *et al.* 1996). In an analogous manner to that discussed above $(\S 7)$ for the hindbrain, the targeted migration of cells may act together with local signals regulatin 1996). In an analogous manner to that discussed above $(\S 7)$ for the hindbrain, the targeted migration of cells may act together with local signals regulating identity to maintain $A-P$ patterning of the branchial arch ne (§7) for the hindbrain, the targeted migration of cells
may act together with local signals regulating identity to
maintain A⁻P patterning of the branchial arch neural
crest crest. Notation A–P patterning of the branchial arch neural

In *Xenopus* embryos, premigratory branchial neural

est is segmented into three adjacent groups of cells that

In *Xenopus* embryos, premigratory branchial neural crest is segmented into three adjacent groups of cells that are destined to enter the first, second and third plus crest is segmented into three adjacent groups of cells that
are destined to enter the first, second and third plus
fourth arches, respectively (Sadaghiani & Thiebaud
1987) The complementary expression of ephrin-B2 in are destined to enter the first, second and third plus
fourth arches, respectively (Sadaghiani & Thiebaud
1987). The complementary expression of ephrin-B2 in
second-arch neural crest and mesoderm, and of EphA4 fourth arches, respectively (Sadaghiani & Thiebaud 1987). The complementary expression of ephrin-B2 in second-arch neural crest and mesoderm, and of EphA4 plus EphBI in third-arch neural crest and mesoderm has 1987). The complementary expression of ephrin-B2 in
second-arch neural crest and mesoderm, and of EphA4
plus EphBl in third-arch neural crest and mesoderm, has
been implicated in the targeted migration of cells (Smith second-arch neural crest and mesoderm, and of EphA4
plus EphBI in third-arch neural crest and mesoderm, has
been implicated in the targeted migration of cells (Smith
et al. 1997). After blocking or ectonic activation of th plus EphBl in third-arch neural crest and mesoderm, has
been implicated in the targeted migration of cells (Smith
et al. 1997). After blocking or ectopic activation of these
Eph receptors, there is an abnormal migration been implicated in the targeted migration of cells (Smith *et al.* 1997). After blocking or ectopic activation of these Eph receptors, there is an abnormal migration of third-
arch neural crest cells into adjacent territor *et al.* 1997). After blocking or ectopic activation of these
Eph receptors, there is an abnormal migration of third-
arch neural crest cells into adjacent territory, consistent
with ephrin-B2 acting to restrict these cell Eph receptors, there is an abnormal migration of third-
arch neural crest cells into adjacent territory, consistent
with ephrin-B2 acting to restrict these cells from inter-
mingling with second-arch neural crest arch neural crest cells into adjacent terr
with ephrin-B2 acting to restrict these
mingling with second-arch neural crest.

9. ROLES AT MULTIPLE STAGES OF PATTERNING

ROLES AT MULTIPLE STAGES OF PATTERNING
Somite formation occurs progressively along the $A-P$
is by the aggregation of groups of mesenchymal cells to \bullet axis by the aggregation of groups of mesenchymal cells to
form entihelial halls. Each somite is subdivided into Somite formation occurs progressively along the $A-P$
axis by the aggregation of groups of mesenchymal cells to
form epithelial balls. Each somite is subdivided into
anterior and posterior halves that are demarcated by a form epithelial balls. Each somite is subdivided into anterior and posterior halves that are demarcated by a morphological boundary (Keynes & Stern 1984). As each form epithelial balls. Each somite is subdivided into
anterior and posterior halves that are demarcated by a
morphological boundary (Keynes & Stern 1984). As each
somite differentiates the sclerotomal component anterior and posterior halves that are demarcated by a
morphological boundary (Keynes & Stern 1984). As each
somite differentiates, the sclerotomal component
(presumptive cartilage) becomes mesenchymal yet its morphological boundary (Keynes & Stern 1984). As each
somite differentiates, the sclerotomal component
(presumptive cartilage) becomes mesenchymal, yet its
segmentation is maintained to later form the reneated somite differentiates, the sclerotomal component
(presumptive cartilage) becomes mesenchymal, yet its
segmentation is maintained to later form the repeated
vertebrae Restrictions to cell intermingling may therefore (presumptive cartilage) becomes mesenchymal, yet its
segmentation is maintained to later form the repeated
vertebrae. Restrictions to cell intermingling may therefore
stabilize the distinct identity of somite derivatives a segmentation is maintained to later form the repeated
vertebrae. Restrictions to cell intermingling may therefore
stabilize the distinct identity of somite derivatives along
the body axis, and of the anterior and posterior vertebrae. Restrictions to cell intermingling may therefore
stabilize the distinct identity of somite derivatives along
the body axis, and of the anterior and posterior half of
each somite that contribute to distinct parts stabilize the distinct identity of somite derivatives along
the body axis, and of the anterior and posterior half of
each somite that contribute to distinct parts of each
vertebra (Goldstein & Kalcheim 1992) Intriguingly the body axis, and of the anterior and posterior half of
each somite that contribute to distinct parts of each
vertebra (Goldstein & Kalcheim 1992). Intriguingly,
there is a complementary expression of ephrin-B2 in the each somite that contribute to distinct parts of each
vertebra (Goldstein & Kalcheim 1992). Intriguingly,
there is a complementary expression of ephrin-B2 in the
posterior half of somites (Bergemann *et al.* 1995; Krull *e* vertebra (Goldstein & Kalcheim 1992). Intriguingly,
there is a complementary expression of ephrin-B2 in the
posterior half of somites (Bergemann *et al.* 1995; Krull *et*
 $a l$ 1997: Wang & Anderson 1997) and of Eph A4 in t there is a complementary expression of ephrin-B2 in the posterior half of somites (Bergemann *et al.* 1995; Krull *et al.* 1997; Wang & Anderson 1997) and of EphA4 in the anterior half of forming somites (Nieto *et al.* 19 posterior half of somites (Bergemann *et al.* 1995; Krull *et al.* 1997; Wang & Anderson 1997) and of EphA4 in the anterior half of forming somites (Nieto *et al.* 1992; Irving *et al.* 1996) in the chick and mouse and a s *al.* 1997; Wang & Anderson 1997) and of EphA4 in the anterior half of forming somites (Nieto *et al.* 1992; Irving *et al.* 1996) in the chick and mouse, and a similar expression of these genes occurs in zehrafish embryos

sion of these genes occurs in zebra*fish embryos* (Durbin *et al.* 1996) in the chick and mouse, and a similar expresion of these genes occurs in zebrafish embryos (Durbin *et et al.* 1996) in the chick and mouse, and a similar expression of these genes occurs in zebrafish embryos (Durbin *et al.* 1998). Furthermore, overexpression in zebrafish embryos of truncated or full-length ephrins that w sion of these genes occurs in zebrafish embryos (Durbin *et al.* 1998). Furthermore, overexpression in zebrafish embryos of truncated or full-length ephrins that will ectonically activate Eph $A4$ leads to the disruption o al. 1998). Furthermore, overexpression in zebrafish
embryos of truncated or full-length ephrins that will
ectopically activate EphA4 leads to the disruption of
somite boundaries (Durbin et al. 1998). The reciprocal embryos of truncated or full-length ephrins that will
ectopically activate EphA4 leads to the disruption of
somite boundaries (Durbin *et al.* 1998). The reciprocal
expression of Eph receptors and ephrins may therefore ectopically activate EphA4 leads to the disruption of somite boundaries (Durbin *et al.* 1998). The reciprocal expression of Eph receptors and ephrins may therefore have a role analogous to that in the hindbrain in somite boundaries (Durbin *et al.* 1998). The reciprocal
expression of Eph receptors and ephrins may therefore
have a role, analogous to that in the hindbrain, in
restricting intermingling between the anterior and expression of Eph receptors and ephrins may therefore
have a role, analogous to that in the hindbrain, in
restricting intermingling between the anterior and
nosterior halves of somites have a role, analogous to
restricting intermingling l
posterior halves of somites.
Taken together with the tricting intermingling between the anterior and
sterior halves of somites.
Taken together with the studies of trunk neural crest
d motor axon migration, these findings show that

posterior halves of somites.
Taken together with the studies of trunk neural crest
and motor axon migration, these findings show that
expression domains of Eph recentors and ephrins act at Taken together with the studies of trunk neural crest
and motor axon migration, these findings show that
expression domains of Eph receptors and ephrins act at
multiple steps of patterning. At early stages, repulsion and motor axon migration, these findings show that
expression domains of Eph receptors and ephrins act at
multiple steps of patterning. At early stages, repulsion
mediated by these proteins may restrict interminaling expression domains of Eph receptors and ephrins act at
multiple steps of patterning. At early stages, repulsion
mediated by these proteins may restrict intermingling
hetween anterior and posterior half somites. In addition multiple steps of patterning. At early stages, repulsion removing or ectopically expressing ephrin-A5 on axonal
mediated by these proteins may restrict intermingling behaviour in stripe assays reveals that persistent Eph
b mediated by these proteins may restrict intermingling
between anterior and posterior half somites. In addition
to allowing correct patterning of somite derivatives, this
restriction stabilizes the enhrin expression domains between anterior and posterior half somites. In addition
to allowing correct patterning of somite derivatives, this
restriction stabilizes the ephrin expression domains later
used as pathfinding cues by migrating cells and to allowing correct patterning of somite derivatives, this
restriction stabilizes the ephrin expression domains later
used as pathfinding cues by migrating cells and axons. An
analogous proposal that ephrin domains may sta restriction stabilizes the ephrin expression domains later
used as pathfinding cues by migrating cells and axons. An
analogous proposal that ephrin domains may stabilize an
early pattern later used as a pathfinding cue can used as pathfinding cues by migrating cells and axons. An analogous proposal that ephrin domains may stabilize an early pattern later used as a pathfinding cue can be made for branchial arch mesoderm in *Xenotus* embryos (analogous proposal that ephrin domains may stabilize an
early pattern later used as a pathfinding cue can be made
for branchial arch mesoderm in *Xenopus* embryos (Smith
et al. 1997), and for the countergradients of ephrin *early pattern later used as a pathfinding cue can be made for branchial arch mesoderm in <i>Xenopus* embryos (Smith *et al.* 1997), and for the countergradients of ephrins and Fnh recentors in the tectum (Connor *et al.* 19 for branchial arch mesoderm in *Xenopus* embryos (Smith *et al.* 1997), and for the countergradients of ephrins and Eph receptors in the tectum (Connor *et al.* 1998).

10. POTENTIAL ROLES IN CELL ADHESION

There is accumulating evidence that in neuronal There is accumulating evidence that in neuronal
growth cones, Eph receptor activation restricts growth
cone movement by triggering a local depolymerization of There is accumulating evidence that in neuronal
growth cones, Eph receptor activation restricts growth
cone movement by triggering a local depolymerization of
the actin cytoskeleton leading to a collapse response. It growth cones, Eph receptor activation restricts growth
cone movement by triggering a local depolymerization of
the actin cytoskeleton leading to a collapse response. It
seems likely that collapse of filanodia of neural cre cone movement by triggering a local depolymerization of
the actin cytoskeleton leading to a collapse response. It
seems likely that collapse of filapodia of neural crest cells
(Jesuthasan, 1996), could also be triggered by the actin cytoskeleton leading to a collapse response. It
seems likely that collapse of filapodia of neural crest cells
(Jesuthasan 1996) could also be triggered by Eph
receptor activation However, it is not known whether seems likely that collapse of filapodia of neural crest cells (Jesuthasan 1996) could also be triggered by Eph receptor activation. However, it is not known whether (Jesuthasan 1996) could also be triggered by Eph
receptor activation. However, it is not known whether
such responses occur in epithelial tissues such as the hind-
brain. There is some evidence that Eph receptors and receptor activation. However, it is not known whether
such responses occur in epithelial tissues such as the hind-
brain. There is some evidence that Eph receptors and
enhring could cause de-adhesion by regulating the func such responses occur in epithelial tissues such as the hind-
brain. There is some evidence that Eph receptors and
ephrins could cause de-adhesion by regulating the func-
tion of cell adhesion molecules (Winning et al. 199 brain. There is some evidence that Eph receptors and example, do Eph receptors and ephrins act in parallel ephrins could cause de-adhesion by regulating the function, and/or regulate, cell adhesion molecules? What are tion ephrins could cause de-adhesion by regulating the func-
tion of cell adhesion molecules (Winning *et al.* 1996; Zisch
et al. 1997; Jones *et al.* 1998). Furthermore, although Eph
receptors and ephrin-B proteins, and what tion of cell adhesion molecules (Winning et al . 1996; Zisch segments (Xu *et al*. 1999), *in vitro* sorting of cells from odd receptor activation can drive cell sorting in hindbrain
segments (Xu *et al.* 1999), *in vitro* sorting of cells from odd
and even rhombomeres requires cell adhesion molecules
(Wizenmann & Lumsden 1997) One possibility is segments (Xu *et al.* 1999), *in vitro* sorting of cells from odd
and even rhombomeres requires cell adhesion molecules
(Wizenmann & Lumsden 1997). One possibility is that an
adhesive system that is uniformly expressed is and even rhombomeres requires cell adhesion molecules
(Wizenmann & Lumsden 1997). One possibility is that an
adhesive system that is uniformly expressed is locally *Phil. Trans. R. Soc. Lond.* B (2000)

regulated by activation of Eph receptors or ephrins. Alternatively, differentially expressed cell adhesion molecules may act in parallel with Eph receptors and ephrins. tively, differentially expressed cell adhesion molecules
ay act in parallel with Eph receptors and ephrins.
In contrast to the repulsion or de-adhesion of cells
served in a number of systems. Eph receptor activation

may act in parallel with Eph receptors and ephrins.
In contrast to the repulsion or de-adhesion of cells
observed in a number of systems, Eph receptor activation
has been found to increase cell adhesion in some situaobserved in a number of systems, Eph receptor activation
has been found to increase cell adhesion in some situaobserved in a number of systems, Eph receptor activation
has been found to increase cell adhesion in some situa-
tions. Activation of Eph receptors with clustered soluble
enhrins leads to an assembly of endothelial cells i has been found to increase cell adhesion in some situations. Activation of Eph receptors with clustered soluble ephrins leads to an assembly of endothelial cells in culture into capillary-like networks (Stein *et al.* 199 tions. Activation of Eph receptors with clustered soluble
ephrins leads to an assembly of endothelial cells in culture
into capillary-like networks (Stein *et al.* 1998), and
promotes angiogenic sprouting (Adams *et al.* 1 ephrins leads to an assembly of endothelial cells in culture
into capillary-like networks (Stein *et al.* 1998), and
promotes angiogenic sprouting (Adams *et al.* 1999). Intri-
puingly the assembly of endothelial cells onl into capillary-like networks (Stein *et al.* 1998), and
promotes angiogenic sprouting (Adams *et al.* 1999). Intri-
guingly, the assembly of endothelial cells only occurred
after clustering of enhrins into complexes greate promotes angiogenic sprouting (Adams *et al.* 1999). Intri-
guingly, the assembly of endothelial cells only occurred
after clustering of ephrins into complexes greater than
dimers suggesting that higher-order clustering of guingly, the assembly of endothelial cells only occurred
after clustering of ephrins into complexes greater than
dimers, suggesting that higher-order clustering of Eph
receptors may trigger a cellular response distinct fro after clustering of ephrins into complexes greater than
dimers, suggesting that higher-order clustering of Eph
receptors may trigger a cellular response distinct from
dimerization (Stein *et al.* 1998). Recent work has sho dimers, suggesting that higher-order clustering of Eph
receptors may trigger a cellular response distinct from
dimerization (Stein *et al.* 1998). Recent work has shown
that Eph receptor activation can increase cell adhesi receptors may trigger a cellular response distinct from dimerization (Stein *et al.* 1998). Recent work has shown that Eph receptor activation can increase cell adhesion to dimerization (Stein *et al.* 1998). Recent work has shown
that Eph receptor activation can increase cell adhesion to
extracellular matrix via integrins (Huyn Do *et al.* 1999).
These findings raise the important question a that Eph receptor activation can increase cell adhesion to extracellular matrix via integrins (Huyn Do et al . 1999).
These findings raise the important question as to what underlies repulsion versus adhesion responses t extracellular matrix via integrins (Huyn Do *et al.* 1999).
These findings raise the important question as to what
underlies repulsion versus adhesion responses to Eph
receptor activation. One explanation could be that thi These findings raise the important question as to what
underlies repulsion versus adhesion responses to Eph
receptor activation. One explanation could be that this is
due to a cell type-specific response. However as discus underlies repulsion versus adhesion responses to Eph
receptor activation. One explanation could be that this is
due to a cell type-specific response. However, as discussed
helow recent studies in the retinotectal system su receptor activation. One explanation could be that this is
due to a cell type-specific response. However, as discussed
below recent studies in the retinotectal system suggest
another possibility due to a cell type-specific response. However, as discussed
below recent studies in the retinotectal system suggest
another possibility.

Although many studies have emphasized the role of another possibility.
Although many studies have emphasized the role of
complementary expression of Eph receptors and ephrins,
it is now clear that overlaps in expression occur in a Although many studies have emphasized the role of
complementary expression of Eph receptors and ephrins,
it is now clear that overlaps in expression occur in a
number of tissues (Elenniken *et al.* 1996; Connor *et al.* complementary expression of Eph receptors and ephrins,
it is now clear that overlaps in expression occur in a
number of tissues (Flenniken *et al.* 1996; Connor *et al.*
1998; Sobieszczuk & Wilkinson 1999). One such site
o number of tissues (Flenniken *et al.* 1996; Connor *et al.* 1998; Sobieszczuk & Wilkinson 1999). One such site occurs in the retina, in which uniform expression of Enh A4 overlaps with enhrin-A5 in axons in the anterior 1998; Sobieszczuk & Wilkinson 1999). One such site
occurs in the retina, in which uniform expression of
EphA4 overlaps with ephrin-A5 in axons in the anterior
retinal leading to persistent receptor activation in these occurs in the retina, in which uniform expression of
EphA4 overlaps with ephrin-A5 in axons in the anterior
retina, leading to persistent receptor activation in these
axons (Connor *et al* 1998) Analysis of the effects of EphA4 overlaps with ephrin-A5 in axons in the anterior
retina, leading to persistent receptor activation in these
axons (Connor *et al.* 1998). Analysis of the effects of
removing or ectonically expressing ephrin-A5 on axo retina, leading to persistent receptor activation in these
axons (Connor *et al.* 1998). Analysis of the effects of
removing or ectopically expressing ephrin-A5 on axonal
behaviour in strine assays reveals that persistent axons (Connor et al. 1998). Analysis of the effects of receptor activation desensitizes growth cones to behaviour in stripe assays reveals that persistent Eph
receptor activation desensitizes growth cones to
exogenous ephrin, such that they navigate further up the
ephrin gradient in the tectum (Hornberger et al. 1999) A receptor activation desensitizes growth cones to exogenous ephrin, such that they navigate further up the ephrin gradient in the tectum (Hornberger *et al.* 1999). A similar conclusion can be drawn from experiments in exogenous ephrin, such that they navigate further up the
ephrin gradient in the tectum (Hornberger *et al.* 1999). A
similar conclusion can be drawn from experiments in
which retinal axons encounter artificial gradients of ephrin gradient in the tectum (Hornberger *et al.* 1999). A similar conclusion can be drawn from experiments in which retinal axons encounter artificial gradients of ephrins in strine assays (Rosentreter *et al.* 1998). B experiments in which retinal axons encounter artificial gradients of ephrins in stripe assays (Rosentreter *et al.* 1998). Based on these findings it will be interesting to determine whether which retinal axons encounter artificial gradients of ephrins in stripe assays (Rosentreter *et al.* 1998). Based on these findings, it will be interesting to determine whether ephrins in stripe assays (Rosentreter *et al.* 1998). Based on these findings, it will be interesting to determine whether the persistent activation of Eph receptor at other sites of overlan with enhrins desensitizes a re these findings, it will be interesting to determine whether
the persistent activation of Eph receptor at other sites of
overlap with ephrins desensitizes a repulsion response. An
intriguing possibility is that below the th the persistent activation of Eph receptor at other sites of
overlap with ephrins desensitizes a repulsion response. An
intriguing possibility is that below the threshold level for
repulsion, persistent Eph receptor activat overlap with ephrins desensitizes a repulsion response. An
intriguing possibility is that below the threshold level for
repulsion, persistent Eph receptor activation leads to an
adhesive response (Huyn Do *et al* 1999) intriguing possibility is that below the thin
repulsion, persistent Eph receptor activat
adhesive response (Huyn Do *et al.* 1999). adhesive response (Huyn Do *et al.* 1999).
11. CONCLUDING PERSPECTIVES

11. CONCLUDING PERSPECTIVES
In conclusion, studies of Eph receptors and ephrins have
own that they have important roles in morphogenesis in IT. CONCLODING PERSPECTIVES
In conclusion, studies of Eph receptors and ephrins have
shown that they have important roles in morphogenesis, in
which they regulate both repulsion and adhesion responses In conclusion, studies of Eph receptors and ephrins have
shown that they have important roles in morphogenesis, in
which they regulate both repulsion and adhesion responses
that establish or stabilize patterns of cellular shown that they have important roles in morphogenesis, in
which they regulate both repulsion and adhesion responses
that establish or stabilize patterns of cellular organization.
These advances raise, many important, quest which they regulate both repulsion and adhesion responses
that establish or stabilize patterns of cellular organization.
These advances raise many important questions. For
example, do Eph receptors and ephrins act in paral that establish or stabilize patterns of cellular organization.
These advances raise many important questions. For
example, do Eph receptors and ephrins act in parallel
with and/or reculate cell adhesion molecules? What are These advances raise many important questions. For example, do Eph receptors and ephrins act in parallel
with, and/or regulate, cell adhesion molecules? What are
the intracellular transduction pathways activated by Eph
receptors and ephrin-B proteins and what underlies with, and/or regulate, cell adhesion molecules? What are
the intracellular transduction pathways activated by Eph
receptors and ephrin-B proteins, and what underlies
repulsion versus adhesion responses? Do ephrin-A the intracellular transduction pathways activated by Eph receptors and ephrin-B proteins, and what underlies
repulsion versus adhesion responses? Do ephrin-A
proteins transduce signals? Do different family members
trigger the same or different responses? It is likely that repulsion versus adhesion responses? Do ephrin-A
proteins transduce signals? Do different family members
trigger the same or different responses? It is likely that
important insights into their roles in morphogenesis will proteins transduce signals? Do different family members
trigger the same or different responses? It is likely that
important insights into their roles in morphogenesis will
come from further dissection of biochemical pathw trigger the same or different responses? It is likely that
important insights into their roles in morphogenesis will
come from further dissection of biochemical pathways,

BIOLOGICAL
SCIENCES CIENCES systematic genetic analysis in amenable systems such as
Drosobhila and *C* elegans as well as studies of cellular *Drosophila* and *C. elegans*, as well as studies of cellular systematic genetic
Drosophila and *C*.
responses *in vivo*.

REFERENCES

- **BIOLOGICAL**
SCIENCES **REFERENCES**
Adams, R. H., Wilkinson, G. A., Weiss, C., Diella, F., Gale,
N. W. Deutsch, H. Risau, W. & Klein, R. 1999, Roles of NET ENENCES
Iams, R. H., Wilkinson, G. A., Weiss, C., Diella, F., Gale,
N. W., Deutsch, U., Risau, W. & Klein, R. 1999 Roles of
ephrin-B ligands and EphB receptors in cardiovascular devellams, R. H., Wilkinson, G. A., Weiss, C., Diella, F., Gale,
N. W., Deutsch, U., Risau, W. & Klein, R. 1999 Roles of
ephrin-B ligands and EphB receptors in cardiovascular devel-
opment: demarcation of arterial/venous domain N. W., Deutsch, U., Risau, W. & Klein, R. 1999 Roles of ephrin-B ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous do[mains, vascular](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0890-9369^28^2913L.295[aid=535069,nlm=9990854]) morphogenesis and sprouting apgiogenesis *Genes* D opment: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. *Genes Dev.* **13**, 295-306. morphogenesis,and sprouting angiogenesis. *Genes Dev.* 13,
295–306.
Becker, N., Seitanidou, T., Murphy, P., Mattei, M.-G., Topilko,
P. Nieto M. A. Wilkinson D. G. Charnay P. & Gilardi-
	- 295–306.
cker, N., Seitanidou, T., Murphy, P., Mattei, M.-G., Topilko,
P., Nieto, M. A., Wilkinson, D. G., Charnay, P. & Gilardi-
Hebenstreit, P. 1994 Several recentor tyrosine kinase genes of cker, N., Seitanidou, T., Murphy, P., Mattei, M.-G., Topilko, P., Nieto, M. A., Wilkinson, D. G., Charnay, P. & Gilardi-Hebenstreit, P. 1994 Several receptor tyrosine kinase genes of the *Ebb* family are segmentally expres P., Nieto, M. A., Wilkinson, D. G., Charnay, P. & Gilardi-Hebenstreit, P. 1994 Several receptor tyrosine kinase genes of the *Eph* family are segmentally expressed in the developing hindbrain *Mech Den* 47 3–17 Hebenstreit, P. 1994 Several rec
the *Eph* family are segmentally
hindbrain. *Mech. Dev.* 47, 3–17.
rgemann. A. D. Cheng. H. J. the*Eph* family are segmentally expressed in the developing D
hindbrain. *Mech. Den* 47, 3–17.
Bergemann, A. D., Cheng, H.-J., Brambilla, R., Klein, R. &
Flanagan I. G. 1995 ELE-2, a new member of the Eph ligand

THE ROYA

PHILOSOPHICAL
TRANSACTIONS

BIOLOGICAL
SCIENCES

THE 1

PHILOSOPHICAL
TRANSACTIONS

- hindbrain. *Mech. Dev.* 47, 3–17.
rgemann, A. D., Cheng, H.-J., Brambilla, R., Klein, R. &
Flanagan, J. G. 1995 ELF-2, a new member of the Eph ligand
family is segmentally expressed in the region of the hindbrain Flanagan, J. G. 1995 ELF-2, a new member of the Eph ligand family, is segmentally expressed in the region of the hindbrain Flanagan, J. G. 1995 ELF-2, a new member of the Eph lig:
family, is segmentally expressed in the region of the hindbr
and newly formed somites. *Mol. Cell. Biol*. **15**, 4921-4929.
repauer E. Sechrist J. Bronner-Fraser M. & family,is segmentally expressed in the region of the hindbrain
and newly formed somites. *Mol. Cell. Biol.* **15**, 4921–4929.
Birgbauer, E., Sechrist, J., Bronner-Fraser, M. & Fraser, S. 1995
Rhombomeric origin and rostro
- Birgbauer, E., Sechrist, J., Bronner-Fraser, M. & Fraser, S. 1995
Rhombomeric origin and rostrocaudal asso[rtment of neural](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0950-1991^28^29121L.935[aid=535072,nlm=7743937]) crest cells revealed by intravital microscopy. *Development* **¹²¹**, 935^945. crestcells revealed by intravital microscopy. *Development* 121, 935–945.
Bradley, R. S., Espeseth, A. & Kintner, C. 1998 NF-proto-
cadherin a novel member of the cadherin superfamily is
- 935–945.
adley, R. S., Espeseth, A. & Kintner, C. 1998 NF-proto-
cadherin, a novel member of the cadherin s[uperfamily, is](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0960-9822^28^298L.325[aid=535073,nlm=9512415])
required for *Xenotus* ectodermal differentiation *Curr Biol* 8. required for *Xenopus* ectodermal differentiation. *Curr. Biol.* **8**, 325-334.
- Bronner-Fraser, M. 1986 Analysis of the early stages of trunk 325–334.
onner-Fraser, M. 1986 Analysis of the early stages of trunk
neural crest migration in avian embryos using monoclonal
antibody HNK-1 Dev Riol 115 44–55 onner-Fraser, M. 1986 Analysis of the contract extended and the methody HNK-1. *Dev. Biol.* **115**, 44–55.

conner-Fraser M. 1993 Mechanisms of ne neuralcrest migration in avian embryos using monoclonal
antibody HNK-1. Dev. Biol. 115, 44–55.
Bronner-Fraser, M. 1993 Mechanisms of neural crest migration.
Bioessays 15, 221–230
- *Bioessays* **15**, 221–230.
Bioessays **15**, 221–230.
Bioessays **15**, 221–230.
Pioner-Frager M & S
- Bioessays15, 221-230.
Bronner-Fraser, M. & Stern, C. 1991 Effect [of mesodermal](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0012-1606^28^29143L.213[aid=535075,nlm=1991548]) tissues on avian neural crest cell migration. *Dev. Biol.* **143**, *Bioessays* **15**, 221–230.

Bronner-Fraser, M. & Stern, C. 1991 Effect of mesodermal

tissues on avian neural crest cell migration. *Dev. Biol.* **143**,

213–217.

Bruckner, K. & Klein, R. 1998 Signaling by Eph receptors an
- 213–217.
uckner, K. & Klein, R. 1998 Signaling by Eph recept
their ephrin ligands. *Curr. Opin. Neurobiol.* **8**, 375–382.
uckner, K. Pasquale, F. B. & Klein, R. 1997 Tyrosin. Bruckner,K., & Klein, R. 1998 Signaling by Eph receptors and
their ephrin ligands. Curr. Opin. Neurobiol. 8, 375–382.
Bruckner, K., Pasquale, E. B. & Klein, R. 1997 Tyrosine phos-
phorvlation of transmembrane ligands for
- their ephrin ligands. Curr. Opin. Neurobiol. **8**, 375–382.
uckner, K., Pasquale, E. B. & Klein, R. 1997 Tyrosine phos-
phorylation of transmembrane ligands for Eph receptors.
Science 275, 1640–1643. uckner, K., Pasquale, E.
Science 275, 1640–1643.
uckner K. Labrador I. phorylationof transmembrane ligands for Eph receptors.
 Science 275, 1640–1643.

Bruckner, K., Labrador, J. P., Scheiffele, P., Herb, A., Seeburg,

P. H. & Klein, R. 1999 EphrinB ligands recruit GRIP family
- Science 275, 1640–1643.
uckner, K., Labrador, J. P., Scheiffele, P., Herb, A., Seeburg,
P. H. & Klein, R. 1999 EphrinB ligands recruit GRIP family
PDZ adaptor proteins into raft membrane microdomains uckner, K., Labrador, J. P., Scheiffele, P., Herb, A., Seeburg,
P. H. & Klein, R. 1999 EphrinB ligands recruit GRIP family
PDZ adaptor proteins into raft membrane microdomains.
Neuron 22 511–524 **P. H. & Klein, R. 19
PDZ** adaptor protei
Neuron 22, 511-524.
1177006 R. White T. Neuron22, 511–524.
Bruzzone, R., White, T. W. & Paul, D. L. 1996 Connections with
- Neuron 22, 511–524.
uzzone, R., White, T. W. & Paul, D. L. 1996 Connections with
connexins: the molecular basis of direct intercellular
signaling Fur 7 Biochem 238, 1–97 uzzone, R., White, T. W. & Paul, D. L
connexins: the molecular basis
signaling. *Eur. J. Biochem*. 238, 1–27.
schert M. Schneider, S. Meskenai connexins:the molecular basis of direct intercellular signaling $Eur \tilde{J}$. Buchern, 238, 1–27.
Buchert, M., Schneider, S., Meskenaite, V., Adams, M. T., Canaani E. Baechi T. Moelling K. & Hovens C. M. 1999.
- signaling. Eur. J. Biochem. 238, 1–27.
chert, M., Schneider, S., Meskenaite, V., Adams, M. T.,
Canaani, E., Baechi, T., Moelling, K. & Hovens, C. M. 1999
The innetion-associated protein AE-6, interacts and clusters chert, M., Schneider, S., Meskenaite, V., Adams, M. T., Canaani, E., Baechi, T., Moelling, K. & Hovens, C. M. 1999
The junction-associated protein AF-6 interacts and clusters
with specific Eph recentor typosine kinases at Canaani, E., Baechi, T., Moelling, K. & Hovens, C. M. 1999
The junction-associated protein AF-6 interacts and clusters
with specific Eph receptor tyrosine kinases at specialised sites
of cell, cell contact in the brain $\$ The junction-associated protein AF-6 interacts and clusters with specific Eph receptor tyrosine kinases at specialised sites of cell-cell contact in the brain. *J. Cell Biol.* **144**, 361–371. withspecific Eph receptor tyrosine kinases at specialised sites
of cell-cell contact in the brain. *J. Cell Biol*. **144**, 361-371.
Connor, R. J., Menzel, P. & Pasquale, E. B. 1998 Expression
and tyrosine phosphorylation o
- of cell–cell contact in the brain. *J. Cell Biol*. **144**, 361–371.

phor, R. J., Menzel, P. & Pasquale, E. B. 1998 Expression

and tyrosine phosphorylation of Eph receptors s[uggest](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0012-1606^28^29193L.21[aid=535078,csa=0012-1606^26vol=193^26iss=1^26firstpage=21,doi=10.1006/dbio.1997.8786,nlm=9466885])

multiple mechanisms in patterning of th put mor, R. J., Menzel, P. & Pasquale, E. B. 1998 Expression
and tyrosine phosphorylation of Eph receptors suggest
multiple mechanisms in patterning of the visual system. *Devl*
Riol 193 21–35 and tyrosine phosphorylation of Eph receptors suggest multiple mechanisms in patterning of the visual system. *Devl Biol*. **193**, 21–35. multiplemechanisms in patterning of the visual system. *Devl Biol.* **193**, 21–35.
avies, R. J., Cook, G. M. W., Stern, C. D. & Keynes, R. J. 1990 Isolation from chick somites of a glycoprotein fraction
- Davies, R. J., Cook, G. M. W., Stern, C. D. & Keynes, R. J. avies, R. J., Cook, G. M. W., Stern, C. D. & Keynes, R. J. 1990 Isolation from chick somites of a glycoprotein fraction that causes collapse of dorsal root ganglion growth cones.
Neuron 4 11–20 1990 Isolation from
that causes colla
Neuron **4**, 11-20. Neuron4, 11-20.
Davis, S., Gale, N. W., Aldrich, T. H., Maisonpierre, P. C.,
- \overline{O} Neuron 4, 11–20.
avis, S., Gale, N. W., Aldrich, T. H., Maisonpierre, P. C.,
Lhotak, V., Pawson, T., Goldfarb, M. & Yancopoulos, G. D.
1994 – Ligands, for EPH-related, receptors, that, require wis, S., Gale, N. W., Aldrich, T. H., Maisonpierre, P. C., Lhotak, V., Pawson, T., Goldfarb, M. & Yancopoulos, G. D.
1994 Ligands for EPH-related receptors [that require](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0036-8075^28^29266L.816[aid=535079,nlm=7973638])
membrane attachment or clustering for activity Scienc Lhotak, V., Pawson, T., Goldfarb, M. & Yancopoulos, G. D. 1994 Ligands for EPH-related receptors that require [membra](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0036-8075^28^29266L.816[aid=535079,nlm=7973638])ne attachment or clustering for activity. *Science* 266, 816–819.
- Debby-Brafman, A., Burstyn-Cohen, T., Klar, A. & Kalcheim, ebby-Brafman, A., Burstyn-Cohen, T., Klar, A. & Kalcheim,
C. 1999 F-spondin, expressed in somite regions avoided by
neural crest cells, mediates inhibition of distinct somite ebby-Brafman, A., Burstyn-Cohen, T., Klar, A. & Kalcheim, C. 1999 F-spondin, expressed in somite regions avoided by neural crest cells, mediates inhibition of distinct somite domains to neural crest migration *Neuron* 22 4 C. 1999 F-spondin, expressed in somite regions avoids
neural crest cells, mediates inhibition of distinct s
domains to neural crest migration. *Neuron* 22, 475–488.
Attori M. Hartley L. Galea M. Payinos. G. Poliz neuralcrest cells, mediates inhibition of distinct somite
domains to neural crest migration. *Neuron* 22, 475–488.
Dottori, M., Hartley, L., Galea, M., Paxinos, G., Polizzotto,
M. Kilnatrick T. Bartlett P. F. Murnby M. Ko
- domains to neural crest migration. *Neuron* 22, 475–488.
ottori, M., Hartley, L., Galea, M., Paxinos, G., Polizzotto,
M., Kilpatrick,T., Bartlett, P. F., Murphy, M., Kontgen, F. &
Boyd A. W. 1998 EphA4 (Sekl) recentor tyro M., Kilpatrick, T., Bartlett, P. F., Murphy, M., Kontgen, F. & Boyd, A. W. 1998 EphA4 (Sekl) receptor tyrosine kin[ase is](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2995L.13248[aid=535081,doi=10.1073/pnas.95.22.13248,nlm=9789074]) required for the development of the corticospinal tract. *Proc.* Boyd, A. W. 1998 EphA4 (Sekl) receptor tyrosine kinase is *Natl Acad. Sci. USA* **⁹⁵**, 13 248^13 253. requiredfor the development of the corticospinal tract. Proc.
 Natl Acad. Sci. USA **95**, 13 248–13 253.

Drescher, U., Kremoser, C., Handwerker, C., Loschinger, J.,

Noda M & Bonhoeffer F 1995 In vitro guidance of retin
- Natl Acad. Sci. USA **95**, 13 248–13 253.

rescher, U., Kremoser, C., Handwerker, C., Loschinger, J.,

Noda, M. & Bonhoeffer, F. 1995 *In vitro* guidance of retinal

ganglion cell axons by RAGS a 25kDa tectal protein rescher, U., Kremoser, C., Handwerker, C., Loschinger, J., Noda, M. & Bonhoeffer, F. 1995 *In vitro* guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal [protein](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0092-8674^28^2982L.359[aid=216758,nlm=7634326]) related to ligands for Eph recentor tyrosine ki Noda, M. & Bonhoeffer, F. 1995 *In vitro* guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. *Cell* **82**, 359–370. relatedto ligands for Eph receptor tyrosine kinases. *Cell* 82,
359–370.
Drescher, U., Bonhoeffer, F. & Muller, B. K. 1997 The Eph
family in retinal axon guidance *Curr Obin*. Neurobiol 7 75–80
- family in retinal axon guidance. *Curr. Opin. Neurobiol.* **7**, 75–80.
Family in retinal axon guidance. <i>Curr. Opin. Neurobiol. **7**, 75–80.
Jupin J. Brennan, C. Sbiomi, K. Cooke, J. Barrios, A. familyin retinal axon guidance. Curr. Opin. Neurobiol. 7, 75-80.
Durbin, L., Brennan, C., Shiomi, K., Cooke, J., Barrios, A.,
- family in retinal axon guidance. Curr. Opin. Neurobiol. 7, 75–80.
urbin, L., Brennan, C., Shiomi, K., Cooke, J., Barrios, A.,
Shanmugalingam, S., Guthrie, B., Lindberg, R. & Holder, N.
1998 Enh signaling is required for se urbin, L., Brennan, C., Shiomi, K., Cooke, J., Barrios, A., Shanmugalingam, S., Guthrie, B., Lindberg, R. & Holder, N. 1998 Eph signaling is required for segmentation and differentiation of the somites *Genes Den* 12, 309 Shanmugalingam, S., Guthrie, B., Lindberg, R. *i*
1998 Eph signaling is required for segmentation *i*
tiation of the somites. *Genes Dev*. **12**, 3096-3109.
Ab Nomenclature Committee 1997 Unified nome 1998Eph signaling is required for segmentation and differentiation of the somites. *Genes Dev.* 12, 3096–3109.
Eph Nomenclature Committee 1997 Unified nomencl[ature for](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0092-8674^28^2990L.403[aid=179904,csa=0092-8674^26vol=90^26iss=3^26firstpage=403,nlm=9267020]) Eph family receptors and their ligands, the ephrins
- tiation of the somites. *Genes Dev.* **12**, 3096–3109.
bh Nomenclature Committee 1997 Unified nomenclature for
Eph family receptors and their ligands, the ephrins. *Cell* **90**,
403–404. Ephfamily receptors and their ligands, the ephrins. *Cell* **90**, 403-404.
Feldheim, D. A., Vanderhaeghen, P., Hansen, M. J., Frisen, J.,
- 403–404.
ldheim, D. A., Vanderhaeghen, P., Hansen, M. J., Frisen, J.,
Lu, Q., Barbacid, M. & Flanagan, J. G. 1998 Topographic
guidance labels in a sensory projection to the forebrain ldheim, D. A., Vanderhaeghen, P., Hansen, M. J., Frisen, J., Lu, Q., Barbacid, M. & Flanagan, J. G. 1998 Topographic guidance labels in a sensory projection to the forebrain.
Neuron 21 1303–1313 guidance labels in a sensory projection to the forebrain.
Neuron **21**, 1303–1313. guidancelabels in a sensory projection to the forebrain.
 Neuron 21, 1303–1313.

Flanagan, J. G. & Vanderhaeghen, P. 1998 The ephrins and

Final receptors in neural development A Rev. Neurobiol 21
- Neuron 21, 1303–1313.
anagan, J. G. & Vanderhaeghen, P. 1998 The ephrins and
Eph receptors in neural development. *A. Rev. Neurobiol*. **21**,
309–345. Eph receptors in neural development. A. Rev. Neurobiol. 21, 309–345.
Flenniken, A. M., Gale, N. W., Yancopoulos, G. D. &
- 309–345.
enniken, A. M., Gale, N. W., Yancopoulos, G. D. &
Wilkinson, D. G. 1996 Distinct and overlapping expression of
ligands for Eph-related receptor tyrosine kinases during enniken, A. M., Gale, N. W., Yancopoulos, G. D. & Wilkinson, D. G. 1996 Distinct and overlapping expression of ligands for Eph-related receptor tyrosine kinases during mouse embryogenesis $Desl$ Rigl 179–382–401 Wilkinson, D. G. 1996 Distinct and overlapping
ligands for Eph-related receptor tyrosine k
mouse embryogenesis. *Devl Biol*. **179**, 382–401.
aser S. Keynes R. & Lumsden, A. 1990 Segme ligandsfor Eph-related receptor tyrosine kinases during
mouse embryogenesis. *Devl Biol*. **179**, 382–401.
Fraser, S., Keynes, R. & Lumsden, A. 1990 Segmentation in the
chick embryo bindbrain is defined by cell lineage re
- mouse embryogenesis. *Devl Biol*. **179**, 382–401.
aser, S., Keynes, R. & Lumsden, A. 1990 Segmentation in the
chick embryo hindbrain is defined by cell lineage restrictions.
Nature **344** 431–435 **AMARER A. & Chick embryo hindbrait Analysis (1874).**
Nature **344**, 431–435.
Analysis (1874). Nature D. R. Mo chickembryo hindbrain is defined by cell lineage restrictions.
 Nature **344**, 431–435.

Friedlander, D. R., Mege, R. M., Cunningham, B. A. &

Edelman, G. M. 1989 Cell sorting-out is modulated by both
- Nature **344**, 431–435.

iedlander, D. R., Mege, R. M., Cunningham, B. A. &

Edelman, G. M. 1989 Cell sorting-out is modulated by both

the specificity and amount of different cell adhesion moliedlander, D. R., Mege, R. M., Cunningham, B. A. & Edelman, G. M. 1989 Cell sorting-out is modulated by both the specificity and amount of different cell adhesion molecules *Prec Natl Acad Sci USA* 86 7043–7047 Edelman, G. M. 1989 Cell sorting-out is modulated by both the specificity and amount of different cell adhesion molecules. *Proc. Natl Acad. Sci. USA* **86**, 7043-7047. thespecificity and amount of different cell adhesion molecules. Proc. Natl Acad. Sci. USA 86, 7043-7047.
Frisen, J., Yates, P. A., McLaughlin, T., Friedman, G. C., O'Leary D. D. M. & Barbacid M. 1998 Ephrin-A5 (AL-1)
- ecules. Proc. Natl Acad. Sci. USA 86, 7043–7047.
isen, J., Yates, P. A., McLaughlin, T., Friedman, G. C.,
O'Leary, D. D. M. & Barbacid, M. 1998 Ephrin-A5 (AL-1/
RACS) is essential for proper retinal axon guidance and isen, J., Yates, P. A., McLaughlin, T., Friedman, G. C., O'Leary, D. D. M. & Barbacid, M. 1998 Ephrin-A5 (AL-1/
RAGS) is essential for proper retinal axon guidan[ce and](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0896-6273^28^2920L.235[aid=535085,nlm=9491985])
topographic mapping in the mammalian visual system *Ne* O'Leary, D. D. M. & Barbacid, M. 1998 Ephrin-A5 (AL-1/ RAGS) is essential for proper retinal axon guidance and topographic mapping in the mammalian visual system. *Neuron* 20, 235-243. RAGS) is essential for proper retinal axon guidance and topographicmapping in the mammalian visual system. *Neuron*
20, 235–243.
Gale, N. W. & Yancopoulos, [G. D. 1997 Ephrins and](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0302-766X^28^29290L.227[aid=535086,csa=0302-766X^26vol=290^26iss=2^26firstpage=227,doi=10.1007/s004410050927]) their
recentors: a repulsive topic? *Cell Tissue Res* 290, 227–241
- 20, 235–243.
ale, N. W. & Yancopoulos, G. D. 1997 Ephrins and the
receptors: a repulsive topic? *Cell Tissue Res.* 290, 227–241.
ale, N. W. (and 11 others), 1996*a*, Eph receptors and ligat Gale, N. W. & Yancopoulos, G. D. 1997 Ephrins and their receptors: a repulsive topic? *Cell Tissue Res.* **290**, 227–241.
Gale, N. W. (and 11 others) 1996*a* Eph receptors and ligands comprise two major specificity subclass
- receptors: a repulsive topic? *Cell Tissue Res.* **290**, 227–241.
Gale, N. W. (and 11 others) 1996*a* Eph receptors and ligands
comprise two major specificity subclasses, are reciprocally
compartmentalised during embryogen comprise two major specificity subclasses, are reciprocally comprisetwo major specificity subclasses, are reciprocally
compartmentalised during embryogenesis. Neuron 17, 9–19.
Gale, N. W., Flenniken, A. M., Wang, H., Compton, D. C.,
Jenkins N. Davis S. Anderson, D. J. Wilkinson, D
- compartmentalised during embryogenesis. Neuron 17, 9–19.
ale, N. W., Flenniken, A. M., Wang, H., Compton, D. C.,
Jenkins, N., Davis, S., Anderson, D. J., Wilkinson, D. G. &
Vancopoulos, G. D. 19966, Elk-J.3, a povel transm ale, N. W., Flenniken, A. M., Wang, H., Compton, D. C., Jenkins, N., Davis, S., Anderson, D. J., Wilkinson, D. G. & Yancopoulos, G. D. 1996*b* Elk-L3, a novel transmembrane ligand for the Eph family of receptor tyrosine ki Jenkins, N., Davis, S., Anderson, D. J., Wilkinson, D. G. & Yancopoulos, G. D. 1996b Elk-L3, a novel transmembrane ligand for the Eph family of receptor tyrosine kinases, expressed in embryonic floor plate roof plate and b Yancopoulos, G. D. 1996b Elk-L3, a novel transmembrane
ligand for the Eph family of receptor tyrosine kinases,
expressed in embryonic floor plate, roof plate and hindbrain
segments O_{PC0GEP} 13 1343–1359 ligand for the Eph family of :
expressed in embryonic floor plate
segments. Oncogene **13**, 1343–1352.
eorge S. E. Simokat K. Hardi expressedin embryonic floor plate, roof plate and hindbrain
segments. Oncogene 13, 1343–1352.
George, S. E., Simokat, K., Hardin, J. & Chisholm, A. D.
1008. The VAB 1. Eph. receptor, tyrosing kingge functions in
- segments Oncogene 13, 1343–1352.

2013 The VAB-1 Eph receptor tyrosine kinase fu[nctions in](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0092-8674^28^2992L.633[aid=535089,nlm=9506518])

1998 The VAB-1 Eph receptor tyrosine kinase functions in

1998 The VAB-1 Eph receptor tyrosine kinase functions in eorge, S. E., Simokat, K., Hardin, J. & Chisholm, A. D. 1998 The VAB-1 Eph receptor tyrosine kinase functions in neural and epithelial morphogenesis in *C. elegans. Cell* **92**, 633–643.
- neuraland epithelial morphogenesis in *C. elegans. Cell* 92, 633–643.
odt, D. & Tepass, U. 1998 *Drosophila* oocyte lo[calization is](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29395L.387[aid=535090,nlm=9759729,doi=10.1038/26493]) mediated by differential cadherin-based adhesion. *Nature* 395, Godt, D. & Tepass, U. 1998 *Drosophila* oocyte localization is mediated by differential cadherin-based adhesion. *Nature* **395**, 387-391. mediatedby differential cadherin-based adhesion. *Nature* **395**, 387–391.
Goldstein, R. S. & Kalcheim, C. 1991 Normal segmentation and size of the primary sympathetic ganglia depend upon the
- 387–391.
bldstein, R. S. & Kalcheim, C. 1991 Normal segmentation and
size of the primary sympathetic ganglia depend upon the
alternation of rostrocaudal properties of the somites bldstein, R. S. & Kalcheim, C. 1991 Normal segmentation and
size of the primary sympathetic ganglia depend upon the
[alternation of rostroca](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0950-1991^28^29112L.327[aid=535098,nlm=1769337])udal properties of the somites.
 $Deselabment$ **112** 327–334 size of the primary sympathetic ganglia depend upon the alternation of rostrocaudal properties of the somites.
Development **112**, 327–334.
- Goldstein, R. S. & Kalcheim, C. 1992 Determin[ation of epi](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0950-1991^28^29116L.441[aid=535099,csa=0950-1991^26vol=116^26iss=2^26firstpage=441,nlm=1286618])oldstein, R. S. & Kalcheim, C. 1992 Determination of epithelial half-somites in skeletal morphogenesis. *Development* **116, 441−445.**
116, 441−445.
2011 **116, 441−445.** the lial half-somites in skeletal morphogenesis. *Development*
116, 441–445.
Gonzalez-Reyes, A. & St Johnston, D. 1998 The *Drosophila* A–P
axis is polarised by the cadherin-mediated positioning of the
- **116**, 441–445.

bnzalez-Reyes, A. & St Johnston, D. 1998 The *Drosophila* A–P

axis is polarised by the cadherin-mediated positioning of the

cocyte *Development* **125**, 3635–3644 onzalez-Reyes, A. & St Johnston, D. 19
axis is polarised by the cadherin-mec
oocyte. *Development* **125**, 3635–3644.
umbiner B. M. 1996. Cell adhesion: axisis polarised by the cadherin-mediated positioning of the oocyte. *Development* **125**, 3635–3644.
Gumbiner, B. M. 1996 Cell adhesion: the molecular basis of tissue architecture and morphogenesis *Cell* 84 345–357

BIOLOGICAL
SCIENCES

ROYA

THE.

PHILOSOPHICAL
TRANSACTIONS

BIOLOGICAL
SCIENCES CIENCES

PHILOSOPHICAL
TRANSACTIONS

- oocyte. *Development* **125**, 3635–3644.

umbiner, B. M. 1996 Cell adhesion: the molecular bas

tissue architecture and morphogenesis. *Cell* **84**, 345–357.

uthrie S. Prince V & Lumsden, A. 1993 Selective disp Gumbiner,B. M. 1996 Cell adhesion: the molecular basis of
tissue architecture and morphogenesis. *Cell* **84**, 345–357.
Guthrie, S., Prince, V. & Lumsden, A. 1993 Selective dispersal
of avian rhombomere cells in orthotoni
- tissue architecture and morphogenesis. *Cell* **84**, 345–357.
uthrie, S., Prince, V. & Lumsden, A. 1993 Selective dispersal
of avian rhombomere cells in orthotopic and heterotopic
grafts *Develobment* 118, 527–538. of avian rhombomere cells in orthotopic and heterotopic grafts. *Development* **118**, 527-538.
- Henkemeyer,M.,Marengere,L.E., McGlade, J., Olivier, J. P., grafts. Development **118**, 527–538.
enkemeyer, M., Marengere, L. E., McGlade, J., Olivier, J. P.,
Conlon, R. A., Holmyard, D. P., Letwin, K. & Pawson, T.
1994 Immunolocalisation of the Nuk receptor tyrosine kinase enkemeyer, M., Marengere, L. E., McGlade, J., Olivier, J. P., Conlon, R. A., Holmyard, D. P., Letwin, K. & Pawson, T.
1994 Immunolocalisation of the Nuk receptor tyrosine kinase
suggests roles in segmental patterning of th Conlon, R. A., Holmyard, D. P., Letwin, K. & Pawson, T.
1994 Immunolocalisation of the Nuk receptor tyrosine kinase
suggests roles in segmental patterning of the brain and axono-
genesis $\Omega_{ncogene}$ 9 1001–1014 1994 Immunolocalisation of the
suggests roles in segmental patte
genesis. *Oncogene* 9, 1001–1014.
Prikemever M Orioli D Her suggestsroles in segmental patterning of the brain and axono-
genesis. Oncogene 9, 1001-1014.
Henkemeyer, M., Orioli, D., Henderson, J. T., Saxton, T. M.,
Roder J. Pawson, T. & Klein, R. 1996. Nuk controls path-
- genesis. Oncogene **9**, 1001–1014.
enkemeyer, M., Orioli, D., Henderson, J. T., Saxton, T. M.,
Roder, J., Pawson, T. & Klein, R. 1996 Nuk controls path-
finding of commisural axons in the mammalian central enkemeyer, M., Orioli, D., Henderson, J. T., Saxton, T. M., Roder, J., Pawson, T. & Klein, R. 1996 Nuk controls path-
finding of commisural axons in the mammalian central
nervous system Cell 86 35–46 Roder, J., Pawson, T. & Klein,
finding of commisural axons
nervous system. *Cell* **86**, 35–46.
evman, J. Kent. A. & J.u findingof commisural axons in the mammalian central
nervous system. *Cell* **86**, 35–46.
Heyman, I., Kent, A. & Lumsden, A. 1993 Cellular
morphology and extracellular space at rhombomere
- nervous system. *Cell* **86**, 35–46.
eyman, I., Kent, A. & Lumsden, A. 1993 Cellular
morphology and extracellular space [at rhombomere](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1058-8388^28^29198L.241[aid=535102,csa=1058-8388^26vol=198^26iss=4^26firstpage=241,nlm=8130372])
boundaries in the chick embryo bindbrain *Devl Dynamics* 198 boundaries in the chick embryo hindbrain. *Devl Dynamics* **¹⁹⁸**, 241^253. boundariesin the chick embryo hindbrain. *Devl Dynamics* 198,

241–253.

Hock, B., Bohme, B., Karn, T., Yamamoto, T., Kaibuchi, K.,

Holtrich II Holland S. Pawson T. Rubsamen-
- 241–253.
ock, B., Bohme, B., Karn, T., Yamamoto, T., Kaibuchi, K.,
Holtrich, U., Holland, S., Pawson, T., Rubsamen-
Waigmann H. & Strebhardt, K. 1998, PDZ-domain-Waigmann, H. & Strebhardt, K. 1998 PDZ-domain-Holtrich, U., Holland, S., Pawson, T., Rubsamen-
Waigmann, H. & Strebhardt, K. 1998 PDZ-domain-
mediated interaction of the Eph-related receptor tyrosine
kinase EphB3 and the ras-binding protein AE6 depends on ŏ Waigmann, H. & Strebhardt, K. 1998 PDZ-domain-
mediated interaction of the Eph-related receptor tyrosine
kinase EphB3 and the ras-binding protein AF6 depends on
the kinase activity of the receptor *Proc. Natl Acad Sci USA* kinase EphB3 and the ras-binding protein AF6 depends on the kinase activity of the receptor. *[Proc. Natl Acad. Sci. USA](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2995L.9779[aid=535103,doi=10.1073/pnas.95.17.9779,nlm=9707552])* 95, 9779–9784. thekinase activity of the receptor. *Proc. Natl Acad. Sci. USA*

95, 9779–9784.

Holland, S. J., Gale, N. W., Mbamulu, G., Yancopoulos, G. D.,

Henkemever M. & Pawson T. 1996 Bidirectional signalling the kinase activity of the receptor. Proc. Natl Acad. Sci. USA
	- 95, 9779–9784.
blland, S. J., Gale, N. W., Mbamulu, G., Yancopoulos, G. D.,
Henkemeyer, M. & Pawson, T. 1996 Bidirectional signalling
through the Eph-family receptor Nuk and its transmembrane blland, S. J., Gale, N. W., Mbamulu, G., Yancopoulos, G. D., Henkemeyer, M. & Pawson, T. 1996 Bidirectional signalling
through the Eph-family receptor Nuk and its transmembrane
ligands. *Nature* 383 722–725 Henkemeyer, M. & Pawson, 1
through the Eph-family recept
ligands. *Nature* **383**, 722–725.
prpherger M. R. (and 11 other throughthe Eph-family receptor Nuk and its transmembrane
ligands. *Nature* **383**, 722–725.
Hornberger, M. R. (and 11 others) 1999 Modulation of EphA
receptor function by coexpressed ephrin-A ligands on retinal
	- ligands. *Nature* **383**, 722–725.
prnberger, M. R. (and 11 others) 1999 Modulation of EphA
receptor function by coexpressed ephrin-A ligands on retinal
ganglion cell axons. *Neuron* 22, 731–742 prnberger, M. R. (and 11 others) 1999 N
receptor function by coexpressed ephrin-
ganglion cell axons. *Neuron* 22, 731–742.
unt. P. Gulisano, M. Cook, M. Sha. receptorfunction by coexpressed ephrin-A ligands on retinal
ganglion cell axons. *Neuron* 22, 731–742.
Hunt, P., Gulisano, M., Cook, M., Sham, M., Faiella, A.,
Wilkinson D. Boncinelli, E. & Krumlauf, R. 1991 A distinct
	- ganglion cell axons. *Neuron* 22, 731-742.
Hunt, P., Gulisano, M., Cook, M., Sham, M., Faiella, A.,
Wilkinson, D., Boncinelli, E. & Krumlauf, R. 19[91 A distinct](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29353L.861[aid=535105,nlm=1682814]) Hox code for the branchial region of the head. *Nature* 353, 861-864. Hoxcode for the branchial region of the head. *Nature* 353, 861–864.
Hunt, P., Clarke, J. D. W., Buxton, P., Ferretti, P. & Thorogood, P. 1998 Stability and plasticity of neural crest patterning and
	- 861–864.
2011, P., Clarke, J. D. W., Buxton, P., Ferretti, P. & Thorogood,
P. 1998 Stability and plasticity of neural crest patterning and
branchial arch. Hox code after extensive cenhalic crest rota. ant, P., Clarke, J. D. W., Buxton, P., Ferretti, P. & Thorogood,
P. 1998 Stability and plasticity of neural crest patterning and
branchial arch Hox code after extensive cephalic crest rota-
tion. $\frac{Devl} \text{ Biol}$ **198** 82-104 P. 1998 Stability and plasticity of neural crest patterning and branchial arch Hox code after extensive cephalic crest rotation. *Devl Biol*. **198**, 82–104.
	- tion. *Devl Biol*. **198**, 82–104.
1911 Do, U., Stein, E., Lane, A. A., Liu, H., Cerretti, D. P. &
Daniel, T. O. 1999 Surface densities of ephrin-B1 determine
EphBL-coupled activation of cell attachment through ayn Do, U., Stein, E., Lane, A. A., Liu, H., Cerretti, D. P. &
Daniel, T. O. 1999 Surface densities of ephrin-Bl determine
EphBl-coupled activation of cell attach[ment through](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0261-4189^28^2918L.2165[aid=535106,nlm=10205170])
alpha(y) beta(3) and alpha(5) beta(l) integrins Daniel, T. O. 1999 Surface densities of ephrin-Bl determine
EphBl-coupled activation of cell attachment through
alpha(v)beta(3) and alpha(5)beta(l) integrins. *EMBO J*. **18**,
2165–2173. alpha(v)beta(3) and alpha(5) beta(l) integrins. $EMBO \mathcal{J}$. 18,
2165–2173.
Irving, C., Nieto, M. A., DasGupta, R., Charnay, P. & Wilkinson D. G. 1996 Progressive spatial restriction of Sek-1
	- 2165–2173.
ving, C., Nieto, M. A., DasGupta, R., Charnay, P. &
Wilkinson, D. G. 1996 Progressive spatial restriction of Sek-1
and Krox-20 gene expression during bindbrain segmentation ving, C., Nieto, M. A., DasGupta, R., Charnay, P. & Wilkinson, D. G. 1996 Progressive spatial restriction of Sek-1 and Krox-20 gene expression during hindbrain segmentation.
 $Dev^{II} Riol$ 173 36–38 Wilkinson, D. G. 1996 Progressive spatial restriction of Sek-1 and Krox-20 gene expression during hindbrain segmentation.
Devl Biol. **173**, 26–38. andKrox-20 gene expression during hindbrain segmentation.
 Devl Biol. 173, 26–38.

	Jesuthasan, S. 1996 Contact inhibition/collapse and pathfinding

	of neural crest cells in the zebrafish trunk. *Development* 122
	- Jesuthasan, S. 1996 Contact inhibition/collapse and pathfinding of neural crest cells in the zebrafish trunk. *Development* **122**, 381-389.
- nes, T. L., Chong, L. D., Kim, J., Xu, R. H., Kung, H. F. & Daar, I. O. 1998 Loss of cell adhesion in *Xenopus laevis* embryos mediated by the cytoplasmic domain of XLerk, an erythropoietin-producing hepatocellular ligand. Jones,T.L., Chong, L. D., Kim, J., Xu, R. H., Kung, H. F. & Daar, I. O. 1998 Loss of cell adhesion in *Xenopus laevis* Daar, I. O. 1998 Loss of cell adhesion in *Xenopus laevis*
embryos mediated by the cytoplasmic domain of XLerk, an
erythropoietin-producing hepatocellular ligand. *[Proc. Natl](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2995L.576[aid=535108,doi=10.1073/pnas.95.2.576,nlm=9435234])*
Acad Sci USA **95** 576–581 embryos mediated by the cy
erythropoietin-producing h
Acad. Sci. USA **95**, 576–581.
alcheim C. & Teillet M. erythropoietin-producinghepatocellular ligand. *Proc. Natl*
Acad. Sci. USA **95**, 576–581.
Kalcheim, C. & Teillet, M.-A. 1989 Consequences of somite
manipulation on the pattern of dorsal root canclion develop. $\overline{0}$
	- *Acad. Sci. USA* **95**, 576–581.
alcheim, C. & Teillet, M.-A. 1989 Consequences of somite
manipulation on the pattern of dorsal root ganglion develop-
ment. Development 106, 85–03. alcheim, C. & Teillet, M.-A.
manipulation on the pattern of
ment. *Development* **106**, 85–93.
expess R. & Stern, C. 1984, Se manipulationon the pattern of dorsal root ganglion development. *Development* **106**, 85–93.
Keynes, R. & St[ern,](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29310L.786[aid=535109,nlm=6472458]) [C.](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29310L.786[aid=535109,nlm=6472458]) [1984 Segmen](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0028-0836^28^29310L.786[aid=535109,nlm=6472458])tation in the vertebrate
	- nervous system. *Nature* **³¹⁰**, 786^789.
- Kimmel, C. B., Warga, R. M. & Kane, D. A. 1994 Cell cycles immel, C. B., Warga, R. M. & Kane, D. A. 1994 Cell cycles
and clonal strings during formation of the zebrafish central
nervous system *Develotment* 120, 265–276 and clonal strings during formation of the zebrafish central nervous system. *Development* **120**, 265–276. andclonal strings during formation of the zebrafish central
nervous system. *Development* 120, 265–276.
Kontges, G. & Lumsden, A. 1996 Rhombencephalic neural
crest segmentation is preserved throughout cranicfacial onto-
- nervous system. *Development* **120**, 265–276.

ontges, G. & Lumsden, A. 1996 Rhombencephalic neural

crest segmentation is preserved throughout craniofacial onto-

geny *Development* **122** 3999–3949 crest segmentation is preserved throughout craniofacial onto-
geny. *Development* 122, 3229-3242.
- Krull, C.E.,Collazo,A.,Fraser,S. E. & Bronner-Fraser, M. 1995 Segmental migration of trunk neural crest[: time lapse](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0950-1991^28^29121L.3733[aid=535111,nlm=8582285]) rull, C. E., Collazo, A., Fraser, S. E. & Bronner-Fraser, M. 1995 Segmental migration of trunk neural crest: time lapse analysis reveals a role for PNA-binding molecules. *Development* 121 3733–3743 **1995 Segmental**
 121, 3733–3743.
 121, 3733–3743. analysisreveals a role for PNA-binding molecules. *Development*
121, 3733–3743.
Krull, C. E., Lansford, R., Gale, N. W., Marcelle, C., Collazo,
A. Vanconoulos. G. D. Fraser, S. E. & Bronner-Fraser, M.
- 121, 3733–3743.
rull, C. E., Lansford, R., Gale, N. W., Marcelle, C., Collazo,
A., Yancopoulos, G. D., Fraser, S. E. & Bronner-Fraser, M.
1997 Interactions of Enh-related recentors and ligands confer rull, C. E., Lansford, R., Gale, N. W., Marcelle, C., Collazo, A., Yancopoulos, G. D., Fraser, S. E. & Bronner-Fraser, M. 1997 Interactions of Eph-related receptors and ligands [confer](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0960-9822^28^297L.571[aid=179912,nlm=9259560]) rostrocaudal pattern to trunk neural c A., Yancopoulos, G. D., Fraser, S. E. & Bronner-Fraser, M. 1997 Interactions of Eph-related receptors and ligands confer rostrocaudal pattern to trunk neural crest migration. *Curr. Riol* 7 571–580 1997 Interactions
rostrocaudal patte
Biol. **7**, 571–580.
umar N H & Gil rostrocaudalpattern to trunk neural crest migration. Curr.
 Biol. 7, 571–580.

Kumar, N. H. & Gilula, N. B. 1996 The gap junction communi-

cation channel Cell 84 381–388
- *Biol.* **7**, 571–580.
umar, N. H. & Gilula, N. B. 1996 T
cation channel. *Cell* **84**, 381–388.
phrador J. P. Brambilla, R. & Klei Kumar,N. H. & Gilula, N. B. 1996 The gap junction communication channel. Cell 84, 381-388.
Labrador, J. P., Brambilla, R. & Klein, R. 1997 The N-terminal elobular domain of Eph receptors is sufficient for ligand
- cation channel. *Cell* **84**, 381–388.

ibrador, J. P., Brambilla, R. & Klein, R. 1997 The N-terminal

globular domain of Eph receptors is sufficient for ligand

binding and receptor signaling *EMRO* 7.16, 3889–3897 globular domain of Eph receptors is sufficient for ligand binding and receptor signaling. *EMBOJ*. **16**, 3889–3897. globulardomain of Eph receptors is sufficient for ligand
binding and receptor signaling. $EMBO \tilde{J}$. **16**, 3889–3897.
Lackmann, M., Oates, A. C., Dottori, M., Smith, F. M., Do,
C. Power, M. Kravets, L. & Boyd, A. W. 1998
- binding and receptor signaling. *EMBO J*. **16**, 3889–3897.
ckmann, M., Oates, A. C., Dottori, M., Smith, F. M., Do,
C., Power, M., Kravets, L. & Boyd, A. W. 1998 Distinct
subdomains of the EphA3 receptor mediate ligand bin ickmann, M., Oates, A. C., Dottori, M., Smith, F. M., Do, C., Power, M., Kravets, L. & Boyd, A. W. 1998 Distinct subdomains of the EphA[3 receptor mediate li](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-9258^28^29273L.20[aid=528164,csa=0021-9258^26vol=273^26iss=1^26firstpage=20,nlm=9417040])gand binding and receptor dimerisation $\frac{7}{100}$ Chem 273 20228 C., Power, M., Kravets, L. & Boyd, A. W. 1998 Distinct subdomains of the EphA3 receptor mediate ligand binding
and receptor dimerisation. *J. Biol. Chem.* 273, 20 228–20 237.
² Douarin N 1989 *The neural crest* Cambridge subdomains of the EphA3 receptor mediate ligand binding
and receptor dimerisation. J. Biol. Chem. 273, 20228–20237.
Le Douarin, N. 1982 *The neural crest*. Cambridge University Press.
Lin D. Gish G. D. Songyang Z. & Pawson
-
- and receptor dimerisation. *J. Biol. Chem.* 273, 20228–20237.
Le Douarin, N. 1982 *The neural crest*. Cambridge University Press.
Lin, D., Gish, G. D., Songyang, Z. & Pawson, T. 1999 The
carboxyl terminus of B class enhrin Lin, D., Gish, G. D., Songyang, Z. & Pawson, T. 1999 The carboxyl terminus of B class ephrins constitutes a PDZ domain binding motif. *J. Biol. Chem.* 274, 3726-3733. carboxyl terminus of B class ephrins constitutes a PDZ
- Lumsden, A. & Keynes,R.1989Segmentalpatternsof neuronal development in the chick hindbrain. *Nature* **³³⁷**, 424^428. Lumsden,A. & Keynes, R. 1989 Segmental patterns of neuronal
development in the chick hindbrain. *Nature* **337**, 424–428.
Lumsden, A. & Krumlauf, R. 1996 Patterning the vertebrate
neuraxis. *Science* **274** 1109–1115
- development in the chick hindbra
imsden, A. & Krumlauf, R. 199
neuraxis. *Science* **274**, 1109–1115.
umsden. A. Sprawson, N. & G Lumsden,A., & Krumlauf, R. 1996 Patterning the vertebrate
neuraxis. Science 274, 1109–1115.
Lumsden, A., Sprawson, N. & Graham, A. 1991 Segmental
origin and migration of neural crest cells in the bindbrain
- neuraxis. *Science* 274, 1109–1115.

umsden, A., Sprawson, N. & Graham, A. 1991 Segmental

origin and migration of neural crest cells in the hindbrain

region of the chick embryo. Development 113, 1981–1991 region of the chick embryo. *N. & Graham, A. 1991 Segn* origin and migration of neural crest cells in the hind
region of the chick embryo. *Development* **113**, 1281–1291.
cGinnis W & Krumlauf R 1999 Homeobox genes and originand migration of neural crest cells in the hindbrain
region of the chick embryo. *Development* **113**, 1281-1291.
McGinnis, W. & Krumlauf, R. 1992 Homeobox genes and axial
- patterning. *Cell* **⁶⁸**, 283^302. McGinnis,W. & Krumlauf, R. 1992 Homeobox genes and axial
patterning. Cell 68, 283–302.
Martinez, S., Geijo, E., Sanchez-Vives, M. V., Puelles, L. &
Gallego, R. 1992 Reduced iunctional permeability at inter-
- patterning. Cell 68, 283–302.
artinez, S., Geijo, E., Sanchez-Vives, M. V., Puelles, L. &
Gallego, R. 1992 Reduced junctional permeability at inter-
rhombomeric boundaries *Development* 116, 1069–1076 artinez, S., Geijo, E., Sanchez-Vives, M. V., Puelles, Gallego, R. 1992 Reduced junctional permeability at rhombomeric boundaries. *Development* **116**, 1069–1076.

eima J. Kliavin J. J. Moran P. Shih A. Winslow J. Gallego,R. 1992 Reduced junctional permeability at inter-
rhombomeric boundaries. *Development* **116**, 1069–1076.
Meima, L., Kljavin, I. J., Moran, P., Shih, A., Winslow, J. W. &
Caras J. W. 1997*a*, AL-l-induced growth
- rhombomeric boundaries. *Development* **116**, 1069–1076.
eima, L., Kljavin, I. J., Moran, P., Shih, A., Winslow, J. W. &
Caras, I. W. 1997*a* AL-1-induced growth cone collapse of rat
cortical neurons is correlated with REK7 eima, L., Kljavin, I. J., Moran, P., Shih, A., Winslow, J.W. & Caras, I.W. 1997a AL-1-induced growth cone collapse of rat cortical neurons is correlated with REK7 expression and rear-
rangement of the actin cytoskeleton Caras, I. W. 1997*a* AL-1-induced growth cone collapse of rat
cortical neurons is correlated with REK7 expression and rear-
rangement of the actin cytoskeleton. *Eur. J. Neurosci*. **9**, 177–188.
eima I. Moran, P. Matthews, corticalneurons is correlated with REK7 expression and rear-
rangement of the actin cytoskeleton. *Eur. J. Neurosci*. 9, 177–188.
Meima, L., Moran, P., Matthews, W. & Caras, I. W. 1997*b*
Lerk⁹ (enhrin-Bl) is a collapsi
- branchialarch Hox code after extensive cephalic crest rota-

ion. *Devl Biol*. 198, 82–104.

Huyn Do, U., Stein, E., Lane, A. A., Liu, H., Cerretti, D. P. & Travel and acts by a mechanism different from AL-1 rangement of the actin cytoskeleton. *Eur.* J. *Neurosci*. **9**, 177–188.
eima, L., Moran, P., Matthews, W. & Caras, I. W. 1997b
Lerk2 (ephrin-Bl) is a collapsing factor for a subset of cortical
growth cones and acts by a eima, L., Moran, P., Matthews, W. & Caras, I. W. 1997*b*
Lerk2 (ephrin-Bl) is a collapsing factor for a subset of cortical
growth cones and acts by a mechanism different from AL-1
(ephrin-A5) *Mol Cell Neurosci* **9** 314–3 Lerk2 (ephrin-Bl) is a collapsing factor for a
growth cones and acts by a mechanism dif
(ephrin-A5). *Mol. Cell. Neurosci*. **9**, 314–328.
ellitzer G. Xu, O. & Wilkinson, D. G. 19 growthcones and acts by a mechanism different from AL-1 (ephrin-A5). *Mol. Cell. Neurosci*. **9**, 314–328.
Mellitzer, G., Xu, Q. & Wilkinson, D. G. 1999 Restriction of cell intermination and communication by Eph recentors
	- (ephrin-A5). *Mol. Cell. Neurosci.* **9**, 314–328.
ellitzer, G., Xu, Q. & Wilkinson, D. G. 1999 Restriction of
cell intermingling and communication by Eph receptors and
ephrins. *Nature* 400. 77–81 cell intermingling and communication by Eph receptors and ephrins. *Nature* **400**, 77-81. cellintermingling and communication by Eph receptors and
ephrins. *Nature* 400, 77–81.
Monschau, B. (and 14 others) 1997 Shared and di[stinct functions](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0261-4189^28^2916L.1258[aid=216766,nlm=9135142])
of R AGS and ELE-1 in guiding retinal axons. *EMBO* 7-16
	- ephrins. *Nature* 400, 77–81.
onschau, B. (and 14 others) 1997 Shared and distinct functions
of RAGS and ELF-1 in guiding retinal axons. *EMBO J*. 16,
1258–1267. ofRAGS and ELF-1 in guiding retinal axons. *EMBO J*. 16, 1258-1267.
Nakamoto, M., Cheng, H.-J., Friedman, G. C., McLaughlin, T.,
	- Hansen, M. J., Yoon, C. H., O'Leary, D. D. M. & Flanagan, Akamoto, M., Cheng, H.-J., Friedman, G. C., McLaughlin, T., Hansen, M. J., Yoon, C. H., O'Leary, D. D. M. & Flanagan, J. G. 1996 Topographically specific effects of Elf-1 on re[tinal](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0092-8674^28^2986L.755[aid=216767,csa=0092-8674^26vol=86^26iss=5^26firstpage=755,nlm=8797822]) axon guidance in vitre and retinal axon Hansen, M. J., Yoon, C. H., O'Leary, D. D. M. & Flanagan, J. G. 1996 Topographically specific effects of Elf-1 on retinal axon guidance *in vitro* and retinal axon mapping *in vivo*. *Cell*
86. 755–766 **5**. **6**. 1996 Top
axon guidance
86, 755–766.
leto M A Gil axonguidance *in vitro* and retinal axon mapping *in vivo. Cell*
 86, 755–766.

	Nieto, M. A., Gilardi-Hebenstreit, P., Charnay, P. & Wilkinson,

	D. G. 1992. A receptor protein typosine kinase implicated in
	- 86, 755–766.
ieto, M. A., Gilardi-Hebenstreit, P., Charnay, P. & Wilkinson,
D. G. 1992 A receptor protein tyrosine kinase implicated in
the segmental patterning of the hindbrain and mesoderm eto, M. A., Gilardi-Hebenstreit, P., Charnay, P. & Wilkinson,
D. G. 1992 A receptor protein tyrosine kinase implicated in
the segmental patterning of the hindbrain and mesoderm.
Development 116 1137–1150 **D. G.** 1992 A receptor prot
the segmental patterning c
Development **116**, 1137–1150.
oden D. 1983 The role of thesegmental pattern[ing of](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0012-1606^28^2996L.144[aid=535122,nlm=6825950]) the hindbrain and mesoderm.
 Development **116**, 1137–1150.

	Noden, D. 1983 The role of the neural crest in patterning of

	vian cranial skeletal connective and muscle tissues. Dz
	- Development **116**, 1137–1150.

	oden, D. 1983 The role of the neural crest in patterning of

	avian cranial skeletal, connective, and muscle tissues. *Devl*
 R_{iol} **96**, $14A-165$ *Biol.* **D.** 1983 The avian cranial skele
Biol. **96**, 144–165.
probev S. Vesque (aviancranial skeletal, connective, and muscle tissues. *Devi*
 Biol. **96**, 144–165.

	Nonchev, S., Vesque, C., Maconochie, M., Seitanidou, T., Ariza-

	McNaughton J., Frain M., Marshall, H., Sham, M.H.
	- Biol. 96, 144-165.
Nonchev, S., Vesque, C., Maconochie, M., Seitanidou, T., Ariza-McNaughton, L., Frain, M., Marshall, H., Sham, M.-H.,

Krumlauf, R. & Charnay, P. 1996 Segmental expression of Krumlauf, R. & Charnay, P. 1996 Segmental expression of
Hoxa-2 in the hindbrain is directly regulated by Krox-20.
Development 122 543–554 Hoxa-2 in the hindbrain is directly regulated by Krox-20.
Development **122**, 543–554. Hoxa-2in the hindbrain is directly regulated by Krox-20.
 Development 122, 543–554.

Nose, A., Nagafuchi, A. & Takeichi, M. 1988 Expressed recom-

binant cadherins mediate cell sorting in model systems. Cell

- *Development* 122, 543–554.
see, A., Nagafuchi, A. & Takeichi, M. 1988 Expressed recom-
binant cadherins mediate cell sorting in model systems. *Cell*
54 993–1001 binant cadherins mediate cell sorting in model systems. *Cell* 54, 993-1001.
- **BIOLOGICAL**
SCIENCES O'Leary,D.D.M. & Wilkinson, D. G. 1999 Eph receptors and O'Leary,D. D. M. & Wilkinson, D. G. 1999 Eph receptors and
ephrins in neural development. *Curr. Opin. Neurobiol.* 9, 65–73.
Orioli, D. & Klein, R. 1997 The Eph family: axonal guidance
by contact repulsion *Trends Genet* ephrins in neural development. *Curr. Opin. Neurobiol*. **⁹**, 65^73.
	- ephrins in neural development. Curr. Opin. Neurol
rioli, D. & Klein, R. 1997 The Eph family: axe
by contact repulsion. *Trends Genet*. **13**, 354–359.
rioli, D. Henkemever, M. Lemke, G. Klein, R. Orioli,D., & Klein, R. 1997 The Eph family: axonal guidance
by contact repulsion. *Trends Genet*. **13**, 354–359.
Orioli, D., Henkemeyer, M., Lemke, G., Klein, R. & Pawson, T.
1996 Sek4 and Nuk recentors cooperate in guida
	- by contact repulsion. *Trends Genet*. **13**, 354–359.
rioli, D., Henkemeyer, M., Lemke, G., Klein, R. & Pawson, T.
1996 Sek4 and Nuk receptors cooperate in guidance of commis-
sural axons and in palate formation. *FMRO* 7-1 1996 Sek4 and Nuk receptors cooperate in guidance of commissural axons and in palate formation. *EMBO*_J. **15**, 6035–6049.
	- Pasquale,E. B. 1991 Identification of chicken embryo kinase 5, a developmentally regulated receptor-type tyrosine kinase of squale, E. B. 1991 Identification of chicker
developmentally regulated receptor-type
the Eph family. *Cell Regulat*. **2**, 523–534.
squale E. B. 1997 The Eph family of rece
	- Pasquale, E. B. 1997 The Eph family of receptors. *[Curr. Opin. Cell](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0955-0674^28^299L.608[aid=288917,csa=0955-0674^26vol=9^26iss=5^26firstpage=608,nlm=9330863]) Biole* Eph family. *Ce*
Biol. **9**, 608–615.
Biol. **9**, 608–615.
Chmann M Fawe Pasquale,E. B. 1997 The Eph family of receptors. Curr. Opin. Cell

	Biol. 9, 608-615.

	Rickmann, M., Fawcett, J. W. & Keynes, R. J. 1985 The migra-

	tion of neural crest cells and the growth of motor axons
	- Biol. 9, 608–615.
ckmann, M., Fawcett, J.W. & Keynes, R. J. 1985 The migra-
tion of neural crest cells and the growth of motor axons
through the rostral half of the chick somite 7 Embrol. Exp ckmann, M., Fawcett, J. W. & Keynes, R. J. 1985 The migration of neural crest cells and the growth of motor axons through the rostral half of the chick somite. *J. Embryol. Exp.*
Marthol **90** 437–455 tion of neural crest cells and the growth of motor axons through the rostral half of the chick somite. *J. Embryol. Exp. Morphol.* **90**, 437-455. through the rostral half of the chick somite. *J. Embryol. Exp.*
Morphol. **90**, 437–455.
Ring, C., Hassell, J. & Halfter, W. 1996 Expression pattern of
collagen IX and potential role in the segmentation of the
	- Morphol. **90**, 437–455.
ng, C., Hassell, J. & Halfter, W. 1996 Expression pattern of
collagen IX and potential role in the segmentation of the
peripheral pervous system. Devl Biol 180–41–53. collagen IX and potential role in the segmentation of the peripheral nervous system. *Devl Biol*. **180**, 41–53. collagenIX and potential role in the segmentation of the peripheral nervous system. *Devl Biol.* **180**, 41–53.
Rosentreter, S. M., Davenport, R. W., Loschinger, J., Huf, J., Iung J. & Bonhoeffer F. 1998. Response of reti
	- peripheral nervous system. *Devl Biol*. **180**, 41–53.
sentreter, S. M., Davenport, R. W., Loschinger, J., Huf, J.,
Jung, J. & Bonhoeffer, F. 1998 Response of retinal ganglion
cell axons to strined linear gradients of repel osentreter, S. M., Davenport, R. W., Loschinger, J., Huf, J., Jung, J. & Bonhoeffer, F. 1998 Response of retinal ganglion cell axons to striped linear gradients of repellent guidance molecules $\frac{7}{100}$ Neurobial 37 541– ㅎ Jung, J. & Bonhoeffer, F. 1998 Resp
cell axons to striped linear gradien
molecules. *J. Neurobiol*. **37**, 541–562.
dagbiani B. & Thiebaud. C. H. 198 molecules.*J. Neurobiol.* 37, 541-562.
Sadaghiani, B. & Thiebaud, C. H. 1987 Neural crest develop
		- molecules. *J. Neurobiol.* **37**, 541–562.
daghiani, B. & Thiebaud, C. H. 1987 Neural crest development in the *Xenopus laevis* embryo, studied by interspecific
transplantation and scanning electron microscopy *Devel Biol* daghiani, B. & Thiebaud, C. H. 1987 Neural crest development in the *Xenopus laevis* embryo, studied by interspecific transplantation and scanning electron microscopy. *[Devl Biol](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0012-1606^28^29124L.91[aid=535133,csa=0012-1606^26vol=124^26iss=1^26firstpage=91,nlm=3666314]).* **124**, 91–110.
Idiver J. R. Krull C. E. transplantationand scanning electron microscopy. *Devl Biol.*
124, 91–110.
Saldivar, J. R., Krull, C. E., Krumlauf, R., Ariza-McNaughton,
I. & Bronner-Fraser M. 1996. Bhombomere of origin deter-
		- 124, 91–110.
ldivar, J. R., Krull, C. E., Krumlauf, R., Ariza-McNaughton,
L. & Bronner-Fraser, M. 1996 Rhombomere of origin deter-
mines autonomousversus environmentally regulated expression ldivar, J. R., Krull, C. E., Krumlauf, R., Ariza-McNaughton,
L. & Bronner-Fraser, M. 1996 Rhombomere of origin determines autonomous versus environmentally regulated expression
of Hoxa³ in the avian neural tube. *Develop* L. & Bronner-Fraser, M. 1996 Rhombomere of origin determines autonomous versus environmentally regulated expression of Hoxa3in the avian neural tube. *Development* **122**, 895–904.
		- Schneider-Maunoury, S., Topilko,P.,Seitanidou,T.,Levi, G., of Hoxa3 in the avian neural tube. *Development* 122, 895–904.
hneider-Maunoury, S., Topilko, P., Seitanidou, T., Levi, G.,
Cohen-Tannoudji, M., Pournin, S., Babinet, C. & Charnay, P.
1993 Discuption of Krox-20 results in hneider-Maunoury, S., Topilko, P., Seitanidou, T., Levi, G., Cohen-Tannoudji, M., Pournin, S., Babinet, C. & Charnay, P.
1993 Disruption of Krox-20 results in alteration of rhombo-
meres 3 and 5 in the developing hindbrain Cohen-Tannoudji, M., Pournin, S., Babinet, C. & Charnay, P.
1993 Disruption of Krox-20 results in alteration of rhombo-
meres 3 and 5 in the developing hindbrain. *Cell* 75, 1199–1214.
ully A. J. McKeown, M. & Thomas, J. B
		- 1993Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. *Cell* 75, 1199–1214.
Scully, A. L., McKeown, M. & Thomas, J. B. 1999 Isolation
and characterization of Dek a *Drosobbil* meres 3 and 5 in the developing hindbrain. *Cell* **75**, 1199–1214.
ully, A. L., McKeown, M. & Thomas, J. B. 1999 Isolation
and characterization of Dek, a *Drosophila* Eph receptor
protein tyrosing kinase *Mol Cell Neurosci* ully, A. L., McKeown, M. & Thomas, J. B. 1999 Isc
and characterization of Dek, a *Drosophila* Eph re
protein tyrosine kinase. *Mol. Cell. Neurosci*. **13**, 337–347.
christ J. Serbedzija G. N. Scherson T. Fraser S.
		- Bronner-Fraser, M. 1993 Segmental migration of the hindchrist, J., Serbedzija, G. N., Scherson, T., Fraser, S. E. & Bronner-Fraser, M. 1993 Segmental migration of the hind-
brain neural crest does not arise from its segmental
generation *Development* 118 691–703 Bronner-Fraser, M. 1993 Segmental n
brain neural crest does not arise
generation. *Development* **118**, 691–703.
am M. H. Vesque C. Nonchey S. M brainneural crest does not arise from its segmental
generation. *Development* **118**, 691–703.
Sham, M. H., Vesque, C., Nonchev, S., Marshall, H., Frain, M.,
Das Gunta R. Whiting J. Wilkinson D. Charnay P. &
		- generation. *Development* **118**, 691–703.

		am, M. H., Vesque, C., Nonchev, S., Marshall, H., Frain, M.,

		Das Gupta, R., Whiting, J., Wilkinson, D., Charnay, P. & W.

		Krumlauf, R. 1993. The zinc finger gene Krox-20 regulat am, M. H., Vesque, C., Nonchev, S., Marshall, H., Frain, M., Das Gupta, R., Whiting, J., Wilkinson, D., Charnay, P. & Krumlauf, R. 1993 The zinc finger gene Krox-20 regulates Hox-R2 during hindbrain segmentation $\frac{C \ell l}{7$ Das Gupta, R., Whiting, J., Wilkinson, D., Charnay, P.
Krumlauf, R. 1993 The zinc finger gene Krox-20 regula
Hox-B2 during hindbrain segmentation. *Cell* **72**, 183–196.
aith A. Robinson V. Patel K. & Wilkinson, D. G. 1997. Krumlauf,R. 1993 The zinc finger gene Krox-20 regulates
Hox-B2 during hindbrain segmentation. *Cell* 72, 183–196.
Smith, A., Robinson, V., Patel, K. & Wilkinson, D. G. 1997 The
Fob 4.4 and EphBl receptor tyrosing kinases
		- Hox-B2 during hindbrain segmentation. Cell 72, 183–196.

		hith, A., Robinson, V., Patel, K. & Wilkinson, D. G. 1997 The

		EphA4 and EphBI receptor tyrosine kinases and ephrin-B2

		ligand regulate targeted migration of branchi hith, A., Robinson, V., Patel, K. & Wilkinson, D. G. 1997 The
EphA4 and EphBl receptor tyrosine kinases and ephrin-B2
ligand regulate targeted migration of branchial neural crest
cells Curr Biol 7, 561–570 EphA4 and EphBI receptor
ligand regulate targeted mi_s
cells. *Curr. Biol.* **7**, 561–570.
bieszczuk D & Wilkinson ligandregulate targeted migration of branchial neural crest
cells. *Curr. Biol.* 7, 561–570.
Sobieszczuk, D. & Wilkinson, D. G. 1999 Masking by Eph
recentors and ephrins *Curr. Biol*. **9**, R469–R470.
		- rells. *Curr. Biol.* 7, 561–570.
bieszczuk, D. & Wilkinson, D. G. 1999 Maski
receptors and ephrins. *Curr. Biol.* 9, R469–R470.
pin. E. Jape A. A. Cerretti, D. P. Schoecklma Sobieszczuk, D. & Wilkinson, D. G. 1999 Masking by Eph
receptors and ephrins. *Curr. Biol*. **9**, R469–R470.
Stein, E., Lane, A. A., Cerretti, D. P., Schoecklmann, H. O.,
Schroff A. D. Van Etten, R. J. & Daniel T. O. 1998 E
		- receptors and ephrins. Curr. Biol. 9, R469–R470.
ein, E., Lane, A. A., Cerretti, D. P., Schoecklmann, H. O.,
Schroff, A. D., Van Etten, R. L. & Daniel, T. O. 1998 Eph
receptors discriminate specific ligand oligomers to det ein, E., Lane, A. A., Cerretti, D. P., Schoecklmann, H. O., Schroff, A. D., Van Etten, R. L. & Daniel, T. O. 1998 Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes attachment Schroff, A. D., Van Etten, R. L. & Daniel, T. O. 1998 Eph
receptors discriminate specific ligand oligomers to determine
alternative signaling complexes, attachment, and assembly
responses *Genes Den* 12, 667–678 receptors discriminate specific ligarial
alternative signaling complexes, a
responses. *Genes Dev.* **12**, 667–678.
einberg M S 1970 Does difference alternativesignaling complexes, attachment, and assembly
responses. *Genes Dev.* 12, 667–678.
Steinberg, M. S. 1970 Does differential adhesion govern self-
assembly processes in histograpsic² Equilibrium processes and
		- responses. *Genes Dev.* 12, 667–678.

		einberg, M. S. 1970 Does differential adhesion govern self-

		assembly processes in histogenesis? Equilibrium processes and

		the emergence of a histogenesity among populations of einberg, M. S. 1970 Does differential adhesion govern self-
assembly processes in histogenesis? Equilibrium processes and
the emergence of a hierarchy among populations of
embryonic cells $\frac{7}{100}$ $\frac{Fwh}{200}$ $\frac{73}{1$ assembly processes in histogenesis? Equilibrium processes and
the emergence of a hierarchy among populations of
embryonic cells. *J. Exp. Zool*. **173**, 395–434.

Stern, C. D., Sisodiya,S.M.&Keynes,R.J. 1986 Interactions

between neurites and somite cells: inhibition and stimulation
of nerve growth in the chick embryo. $\tilde{\tau}$ Embryal Exp. Marphal between neurites and somite cells: inhibition and stimulation
of nerve growth in the chick embryo. *J. Embryol. Exp. Morphol.*
91, 209–226.
uder M. Gavalas A. Marshall H. Ariza-McNaughton L. of nerve growth in the chick embryo. *J. Embryol. Exp. Morphol.*
 91, 209–226.

Studer, M., Gavalas, A., Marshall, H., Ariza-McNaughton, L.,

Riili F. Chambon, P. & Krumlauf, R. 1998 Genetic inter-

- **91**, 209–226.
uder, M., Gavalas, A., Marshall, H., Ariza-McNaughton, L.,
Rijli, F., Chambon, P. & Krumlauf, R. 1998 Genetic inter-
action between *Haval* and *Havhl* reveal new roles in regulation uder, M., Gavalas, A., Marshall, H., Ariza-McNaughton, L.,
Rijli, F., Chambon, P. & Krumlauf, R. 1998 Genetic inter-
action between *Hoxal* and *Hoxbl* reveal new roles in regulation
of early hindbrain natterning. *Develop* Rijli, F., Chambon, P. & Krumlauf, R. 1998 Genetic interaction between *Hoxal* and *Hoxbl* reveal new roles in regulation fearly hindbrain patterning. *Development* **125**, 1025–1036.
 125, 1025–1036.
 125, 1025–1036.
 ofearly hindbrain patterning. Development 125, 1025–1036.
Suga, H., Koyanagi, M., Ono, K., Iwabe, N., Kuma, K. &
- Miyata, T. 1999 Extensive gene duplication in the early evoluga, H., Koyanagi, M., Ono, K., Iwabe, N., Kuma, K. & Miyata, T. 1999 Extensive gene duplication in the early evolution of animals before the parazoan-eumetazoan split demonstrated by G proteins and protein tyrosine kinases Miyata, T. 1999 Extensive gene duplication in the early evolution of animals before the parazoan-eumetazoan split demonstrated by G proteins and protein tyrosine kinases from sponge and bydra $\frac{7 \text{ Mol}}{1 \text{ } R}$ and $\frac{4$ demonstrated by G proteins and protein tyrosine kinases from sponge and hydra. *J. Mol. Evol.* **48**, 646–653. demonstratedby G proteins and protein tyrosine kinases from
sponge and hydra. $\tilde{\jmath}$. Mol . $Evol$. **48**, 646–653.
Swiatek, P. J. & Gridley, T. 1993 Perinatal lethality and defects in
hindhrain development in mice homoz
- sponge and hydra. *J. Mol. Evol.* **48**, 646–653.
*i*atek, P. J. & Gridley, T. 1993 Perinatal lethality and defects in hindbrain development in mice homozygousfor a targeted muta-
tion of the zinc finger gene K rox-20. *Ge* hindbrain development in mice homozygous for a targeted mutation of the zinc finger gene Krox-20. *Genes Dev.* **7**, 2071–2084. hindbraindevelopment in mice homozygous for a targeted mutation of the zinc finger gene Krox-20. *Genes Dea* 7, 2071–2084.
Takeichi, M. 1991 Cadherin cell adhesion receptors as a mornhogenetic regulator *Science* 251 145
- tion of the zinc finger gene Krox-20. *Genes Dev.* 7, 20
keichi, M. 1991 Cadherin cell adhesion rece
morphogenetic regulator. *Science* 251, 1451–1455.
neia R. Thisse B. Riili F. M. Thisse C. morphogeneticregulator. Science 251, 1451-1455.
Taneja, R., Thisse, B., Rijli, F. M., Thisse, C., Bouillet, P.,
- morphogenetic regulator. *Science* 251, 1451–1455.
neja, R., Thisse, B., Rijli, F. M., Thisse, C., Bouillet, P.,
Dolle, P. & Chambon, P. 1996 The expression pattern of the
mouse receptor tyrosine kinase gene MDK1 is conser neja, R., Thisse, B., Rijli, F. M., Thisse, C., Bouillet, P.,
Dolle, P. & Chambon, P. 1996 The expression pattern of the
mouse receptor tyrosine kinase gene MDK1 is conserved
through evolution and requires Hoxa-2 for rhomb Dolle, P. & Chambon, P. 1996 The expression pattern of the mouse receptor tyrosine kinase gene MDK1 is conserved through evolution and requires Hoxa-2 for rhombomere-
specific expression in mouse embryos $Denl$ Rial 177 397 mouse receptor tyrosine kinase gene MDK1 is conserved
through evolution and requires Hoxa-2 for rhombomere-
specific expression in mouse embryos. *Devl Biol*. **177**, 397–412.
heil T. Frain M. Gilardi-Hebenstreit P. Flennik throughevolution and requires Hoxa-2 for rhombomere-
specific expression in mouse embryos. *Devl Biol*. 177, 397–412.
Theil, T., Frain, M., Gilardi-Hebenstreit, P., Flenniken, A. M.,
Charnay P. & Wilkinson D. G. 1998 Seg
- specific expression in mouse embryos. *Devl Biol*. **177**, 397–412.
Theil, T., Frain, M., Gilardi-Hebenstreit, P., Flenniken, A. M., Charnay, P. & Wilkinson, D. G. 1998 Segmental expression of teil, T., Frain, M., Gilardi-Hebenstreit, P., Flenniken, A. M., Charnay, P. & Wilkinson, D. G. 1998 Segmental expression of the EphA4 (Sek-1) gene is under direct transcriptional control of Krox-20 *Development* 125 443–45 Charnay, P. & Wilkinson, D. G. 1998 Segmenta
the EphA4 (Sek-1) gene is under direct
control of Krox-20. *Development* **125**, 443–452.
rres R. Firestein B. L. Dong H. Staudin controlof Krox-20. *Development* 125, 443-452.
Torres, R., Firestein, B. L., Dong, H., Staudinger, J., Olson,
- control of Krox-20. *Development* 125, 443–452.
rres, R., Firestein, B. L., Dong, H., Staudinger, J., Olson,
E. N., Huganir, R. L., Bredt, D. S., Gale, N. W. &
Vancopoulos. G. D. 1998. PDZ domains bind, cluster, and rres, R., Firestein, B. L., Dong, H., Staudinger, J., Olson,
E. N., Huganir, R. L., Bredt, D. S., Gale, N. W. &
Yancopoulos, G. D. 1998 PDZ domains bind, cluster, and
synantically colocalize with Eph recentors and their ep E. N., Huganir, R. L., Bredt, D. S., Gale, N. W. & Yancopoulos, G. D. 1998 PDZ domains bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands *Neuron* 21 1453–1463 Yancopoulos, G. D. 1998 PD.
synaptically colocalize with Erligands. *Neuron* 21, 1453–1463.
wnes P. L. & Holfreter I. 19 synapticallycolocalize with Eph receptors and their ephrin
ligands. *Neuron* 21, 1453–1463.
Townes, P. L. & Holfreter, J. 1955 Directed movements and
selective adhesion of embryonic amphibian cells. 7 *Exh*. Zool
- ligands. *Neuron* 21, 1453–1463.
wnes, P. L. & Holfreter, J. 1955 Directed movements and
selective adhesion of embryonic amphibian cells. *J. Exp. Zool*.
128, 53–120.
alter J. Kern-Veits. B. Huf. J. Stolze, B. & Bonboeff selective adhesion of embryonic amphibian cells. *J. Exp. Zool.*
128, 53–120.
Walter, J., Kern-Veits, B., Huf, J., Stolze, B. & Bonhoeffer, F.
1987 Recognition of position-specific properties of tectal cell
- 128, 53–120.
alter, J., Kern-Veits, B., Huf, J., Stolze, B. & Bonhoeffer, F.
1987 Recognition of position-specific properties of tectal cell
membranes by retinal axons in vitro, Development 101, 685–696 alter, J., Kern-Veits, B., Huf, J., Stolze, B. & Bonhoeffer, F.
1987 Recognition of position-specific properties of tectal cell
membranes by retinal axons *in vitro*. *Development* **101**, 685–696.
ang H. U. & Anderson D. J 1987Recognition of position-specific properties of tectal cell
membranes by retinal axons in vitro. Development **101**, 685–696.
Wang, H. U. & Anderson, D. J. 1997 Eph family transmembrane
ligands can mediate repulsive gu
- membranes by retinal axons *in vitro. Development* **101**, 685–696.
ang, H. U. & Anderson, D. J. 1997 Eph family transmembrane
ligands can mediate repulsive guidance of trunk neural crest
migration and motor axon outgrowth. Wang, H. U. & Anderson, D. J. 1997 Eph family transmembrane ligands can mediate repulsive guidance of trunk neural crest migration and motor axon outgrowth. *Neuron* **18**, 383–396. ligandscan mediate repulsive guidance of trunk neural crest
migration and motor axon outgrowth. *Neuron* **18**, 383–396.
Wang, H. U., Chen, Z.-F. & Anderson, D. J. 1998 Molecular
distinction and angiogenic interaction betw
- andcharacterization of Dek, a *Drosophila* Eph receptor arteries and veins revealed by ephrin-B2 and its receptor protein tyrosine kinase. *Mol. Cell. Neurosci*. **13**, 337–347. EphB4. *Cell* 93, 741–753.
Sechrist, J., Ser migration and motor axon outgrowth. *Neuron* **18**, 383–396.
ang, H. U., Chen, Z.-F. & Anderson, D. J. 1998 Molecular
distinction and angiogenic interaction between embryonic
arteries and veins revealed by enhrin-R₂ and i ang, H. U., Chen, Z.-F. & Anderson, D. J. 1998 Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor F_ph B4. Cell 93.741–753. distinction and angiogen
arteries and veins reveal
EphB4. *Cell* 93, 741-753.
ilkinson D G 1993 Mo arteriesand veins revealed by ephrin-B2 and its receptor
EphB4. Cell 93, 741-753.
Wilkinson, D. G. 1993 Molecular mechanisms of segmental
patterning in the vertebrate hindbrain and neural crest
	- EphB4. *Cell* 93, 741–753.
ilkinson, D. G. 1993 Molecular mechanisms of segmental
patterning in the vertebrate hindbrain and neural crest.
*Riossca*vs 15, 499–505. *Bioessays* **15**, 4993
Bioessays **15**, 499–505.
Bioessays **15**, 499–505. patterningin the vertebrate hindbrain and neural crest.
Bioessays **15**, 499–505.
Wilkinson, D. G. 2000 Eph receptors and ephrins: regulators of guidance and assembly *Int Rev. Cytol* (In the press)
	- *Bioessays* **15**, 499–505.
ilkinson, D. G. 2000 Eph receptors and ephrins: regul
guidance and assembly. *Int. Rev. Cytol*. (In the press.)
inning R. S. Scales J. B. & Sargent T. D. 1996 Disru Wilkinson, D. G. 2000 Eph receptors and ephrins: regulators of
guidance and assembly. *Int. Rev. Cytol.* (In the press.)
Winning, R. S., Scales, J. B. & Sargent, T. D. 1996 Disruption of
cell adhesion in *Yendrus* embryos
	- guidance and assembly. *Int. Rev. Cytol.* (In the press.)
inning, R. S., Scales, J. B. & Sargent, T. D. 1996 Disruption of
cell adhesion in *Xenopus* embryos by Pagliaccio, an Eph-class
receptor tyrosine kinase. *Devl Biol* inning, R. S., Scales, J. B. & Sargent, T. D. 1996 L
cell adhesion in *Xenopus* embryos by Pagliaccio, a
receptor tyrosine kinase. *Devl Biol*. **179**, 309–319.
izenmann. A. & Lumsden. A. 1997 Segregation of rh celladhesion in *Xenopus* embryos by Pagliaccio, an Eph-class
receptor tyrosine kinase. *Devl Biol*. **179**, 309–319.
Wizenmann, A. & Lumsden, A. 1997 Segregation of rhombomeres
by differential chemoaffinity. *Mol. Cell.*
	- receptor tyrosine kinase. *Devl Biol*. **179**, 309–319.
izenmann, A. & Lumsden, A. 1997 Segregation of rhombome
by differential chemoaffinity. *Mol. Cell. Neurosci*. **9**, 448–459.
1. O. Alldus, G. Holder, N. & Wilkinson, D. Wizenmann,A. & Lumsden, A. 1997 Segregation of rhombomeres
by differential chemoaffinity. *Mol. Cell. Neurosci*. **9**, 448–459.
Xu, Q., Alldus, G., Holder, N. & Wilkinson, D. G. 1995
Expression, of truncated, Sek-1, recept
	- by differential chemoaffinity. *Mol. Cell. Neurosci*. 9, 448–459.

	1, Q., Alldus, G., Holder, N. & Wilkinson, D. G. 1995

	Expression of truncated Sek-1 receptor tyrosine kinase

	disrupts the segmental restriction of gene e 4, Q., Alldus, G., Holder, N. & Wilkinson, D. G. 1995
Expression of truncated Sek-1 receptor tyrosine kinase
disrupts the segmental restriction of gene expression in the
Xenotus and zebrafish hindbrain *Development* 121 Expression of truncated Sek-1 receptor tyrosine kinase
disrupts the segmental restriction of gene expression in the
Xenopus and zebrafish hindbrain. *Development* **121**, 4005-4016.
O Mellitzer G. Robinson V. & Wilkinso disruptsthe segmental restriction of gene expression in the *Xenopus* and zebrafish hindbrain. *Development* **121**, 4005–4016. Xu, Q., Mellitzer, G., Robinson, V. & Wilkinson, D. G. 1999 *In*
	- *Xenopus* and zebrafish hindbrain. *Development* **121**, 4005–4016.
 vivo cell sorting in complementary segmental domains

	mediated by Eph receptors and ephrins *Nature* **300**, 267–271 mediated by Eph receptors and ephrins. *Nature* 399, 267–271.
 Rive cell sorting in complementary segmental domains

	mediated by Eph receptors and ephrins. *Nature* 399, 267–271.
 Phononical By Property: Requisition of *vivo*cell sorting in complementary segmental domains
mediated by Eph receptors and ephrins. *Nature* **399**, 267–271.
Zhou, R. P. 1997 Regulation of topographic projection by the
Find family receptor Bsk (EphA5) and its
	- mediated by Eph receptors and ephrins. *Nature* **399**, 267–271.
Zhou, R. P. 1997 Regulation of topographic projection by the
Eph family receptor Bsk (EphA5) and its ligands. *[Cell Tissue](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0302-766X^28^29290L.251[aid=535149,csa=0302-766X^26vol=290^26iss=2^26firstpage=251,doi=10.1007/s004410050929])*
 $Res.$ **290**, 251–259. Eph family receptor Bsk (EphA5) and its ligands. Cell Tissue Ephfamily receptor Bsk (EphA5) and its ligands. *Cell Tissue*
 Res. **290**, 251–259.

	Zisch, A. H., Stallcup, W. B., Chong, L. D., Dahlin-Huppe, K.,

	Vochol J. Schachner, M. & Pasquale, E. B. 1997 Tyrosine
	- Res. 290, 251–259.
sch, A. H., Stallcup, W. B., Chong, L. D., Dahlin-Huppe, K.,
Voshol, J., Schachner, M. & Pasquale, E. B. 1997 Tyrosine
phosphorylation of L1 family adhesion molecules: implication sch, A. H., Stallcup, W. B., Chong, L. D., Dahlin-Huppe, K., Voshol, J., Schachner, M. & Pasquale, E. B. 1997 Tyrosine
phosphorylation of L1 f[amily adhesion molecules: im](http://barbarina.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0360-4012^28^2947L.655[aid=535150,doi=10.1002/^28SICI^291097-4547^2819970315^2947:6^3C655::AID-JNR12^3E3.0.CO^3B2-U,nlm=9089215])plication
of the Eph kinase Cek5, 7 Neurosci Res. 47 Voshol, J., Schachner, M. & Pasquale, E. B. 1997 Tyrosine phosphorylation of L1 family adhesion molecules: implication of the Eph kinase Cek5. *J. Neurosci. Res.* **47**, 655–665.

BIOLOGICAL

THE

PHILOSOPHICAL
TRANSACTIONS $\overline{0}$